斯坦福实验室很快就成为此类工作的中心。这些工作包括建造引力波的棒探测器、测量正电子自由落体的尝试,以及使用轨道陀螺仪测量旋转地球对爱因斯坦“惯性系的拖拽”的实验。巧合的是,这次会议也恰逢爱因斯坦最终提出广义相对论 75 周年纪念日的两个月内。基于等效原理,即不同物体自由落体加速度相等,广义相对论将引力解释为弯曲时空的结果。尽管该理论在最初的 45 年里几乎处于沉寂状态,但过去 30 年见证了该学科的复兴,尤其是在实验引力领域。事实上,1960-80 年代是测试相对论的黄金时代,在此期间,该理论对太阳系效应的大部分预测(光偏转、引力红移、光的延迟、水星近日点的推进以及惯性和引力等效原理)都得到了证实。
摘要:在统计程序TALYS v1.96和质子中子准粒子随机相近似(pn-QRPA)模型框架内,研究了Mo同位素的中子俘获率和随温度变化的恒星β衰变率。在统计程序TA-LYS v1.96框架内,基于现象学核能级密度模型和γ强度函数,分析了Mo(n,γ)Mo辐射俘获过程的麦克斯韦平均截面(MACS)和中子俘获率。基于模型的MACS计算与现有测量数据相当。在pn-QRPA模型框架内,研究了恒星弱相互作用率对不同密度和温度的敏感性。特别关注了衰变核(Mo)中热填充激发态对电子发射和正电子俘获率的影响。此外,我们比较了中子俘获率和恒星β衰变率,发现无论在低温还是高温下,中子俘获率都高于恒星β衰变率。
我们报告了在 MgO 烟粉的开放体积内,正电子原子中 1 3 S 1 → 2 3 PJ 和 2 3 PJ → n 3 D / n 3 S 跃迁频率变化的测量结果。观察到的间隔大于相应的真空激发,但令人惊讶的是,跃迁到里德堡态受到的影响较小,并且能量变化与最终状态的主量子数 n 无关。我们将这些变化归因于 Ps 原子和 MgO 表面之间的共振相互作用,通过光谱重叠的 MgO 紫外 (UV) 光致发光吸收带介导。由于许多适用于 Ps 约束的绝缘材料表现出类似的宽带紫外吸收特性,观察到的现象对于光学诊断和激光冷却方案具有重要意义,这些方案与绝缘腔中高密度 Ps 集合的研究有关,包括 Ps 玻色-爱因斯坦凝聚态的生产。
利用 Mainz Microtron MAMI 新开发的 530 MeV 正电子束和弯曲硅晶体,我们首次成功通过平面通道和体积反射高效操纵正电子轨迹。这揭示了带电粒子在弯曲晶体平面之间通道时,其角分布中存在精细结构。我们的实验结果与模拟结果的一致不仅表明对带电粒子束和弯曲晶体之间相互作用的理解更加深刻,而且标志着在 GeV 范围内运行的圆形加速器中慢速提取创新方法开发的新阶段,对全球加速器都有影响。我们的研究结果还标志着通过周期性弯曲晶体中的通道过程生成先进 x 射线源的重大进展,这源于对正电子束和此类晶体之间相互作用的全面理解。
铷及其化合物的应用包括生物医学研究、电子、特种玻璃和烟火技术。特种玻璃是铷的主要市场;碳酸铷用于降低电导率,从而提高光纤电信网络的稳定性和耐用性。生物医学应用包括用于抗休克剂和治疗癫痫和甲状腺疾病的铷盐;铷-82,一种用作正电子发射断层成像中的血流示踪剂的放射性同位素;以及用作抗抑郁药的氯化铷。铷原子用于学术研究,包括开发基于量子力学的计算设备,这是一种未来应用,可能会消耗相对较高的铷。量子计算研究在各种应用中使用超冷铷原子。量子计算机能够通过同时计算两个量子态来执行比传统计算机更复杂的计算任务,预计到 2025 年将进入原型阶段。
摘要:几十年来,质子辐照实验一直被用作研究多种材料辐射效应的替代方法。质子加速器的丰富性和可及性使这种方法便于进行加速辐射老化研究。然而,开发具有更高辐射稳定性的新材料需要大量的模型材料、测试样品,并非常有效地利用加速器光束时间。因此,最佳束流或粒子通量的问题至关重要,需要充分了解。在这项工作中,我们使用 5 MeV 质子在砷化镓样品中引入位移损伤,并使用了广泛的通量值。正电子湮没寿命谱用于定量评估辐射诱导的存活空位的浓度。结果表明,质子通量在 10 11 和 10 12 cm − 2 .s − 1 之间会导致 GaAs 半导体材料中产生类似的单空位浓度,而通量进一步增加会导致该浓度急剧下降。
摘要 X/γ 射线在实验室天体物理和粒子物理中有许多潜在的应用。尽管已经提出了几种方法来产生具有角动量(AM)的电子、正电子和 X/γ 光子束,但产生超强明亮的 γ 射线仍然具有挑战性。本文提出了一种全光学方案来产生具有大光束角动量(BAM)、小发散度和高亮度的高能 γ 光子束。在第一阶段,强度为 10 22 W/cm 2 的圆偏振激光脉冲照射微通道靶,从通道壁拖出电子,并通过纵向电场将其加速到高能量。在此过程中,激光将其自旋角动量(SAM)转换为电子的轨道角动量(OAM)。在第二阶段,驱动脉冲被附着的扇形箔反射,从而形成涡旋激光脉冲。在第三阶段,高能电子与反射的涡旋脉冲正面碰撞,并通过非线性康普顿散射将其 AM 转移到 γ 光子。三维粒子模拟表明,γ 射线束的峰值亮度约为 10 22
摘要X/γ-砂在实验室天体物理学和粒子物理学中具有许多潜在的应用。已经提出了几种具有角动量(AM)的电子,正电子和X/γ-光子束的方法,但超强度的亮γ射线的产生仍然具有挑战性。在这里,我们提出了一个全光方案,以产生具有大型束角动量(BAM),小差异和高光彩的高能量γ-光束。在第一个阶段,强度为10 22 W/cm 2的圆形极化激光脉冲辐射一个微通道目标,从通道壁上拖出电子,并通过纵向电力场将它们加速到高能。在此过程中,激光将其自旋角动量(SAM)转移到电子轨道角动量(OAM)。在第二阶段,驱动脉冲通过附着的风扇翼反映,因此形成了涡流激光脉冲。在第三阶段,能量电子与反射的涡流脉冲正面碰撞,并通过非线性康普顿散射将其AM传递到γ-播种。三维粒子中的模拟表明,γ射线束的峰值光彩为〜10 22
神经发育障碍(NDDS)是一组复杂的神经系统疾病和精神疾病。功能性和分子成像技术,例如静息状态功能磁共振成像(RS-FMRI)和正电子发射tomog-raphy(PET),可用于在人类和人类模型中成熟期间在成熟期间非侵入性和纵向测量网络活性。Here, we review the current knowledge on rs-fMRI and PET biomarkers in the study of normal and abnormal neurodevelopment, including intellectual disability (ID; with/without epilepsy), autism spectrum disorder (ASD), and attention deficit hyperactivity disorder (ADHD), in humans and rodent models from birth until adulthood, and evaluate the cross-species translational value of the imaging biomarkers.迄今为止,只有少数孤立的研究使用RS-FMRI或PET在婴儿期(神经发育的关键时期)中研究啮齿动物的神经发育(异常)。Further work to explore the feasibility of performing functional imaging studies in infant rodent models is essential, as rs-fMRI and PET imag- ing in transgenic rodent models of NDDs are powerful techniques for studying disease pathogenesis, developing noninvasive pre- clinical imaging biomarkers of neurodevelopmental dysfunction, and evaluating treatment-response in disease-specific models.
冶金工程涉及将岩石和矿物质转化为使我们生活更美好的金属和矿物产品的研究,设计,实施和改进。Metallurgical engineering students take courses in: particle separation technology, which focuses on particle separation, processing, and recycling, and includes particle characterization, comminution, size separation, flotation, coal preparation, remediation of nuclear materials, automatic control and process engineering of particles including metal powders, energy-related minerals, pigments, and ceramics;化学冶金术,重点是去除金属,加工和回收到纯化的金属中,包括异质反应动力学,运输现象,计算机建模,浸出,溶液纯化,离子纯化,溶剂萃取,降水,降水,烘焙,烘焙,还原,还原,冶炼,冶炼,铁,铁和钢材;和物理冶金,重点是金属铸造,形成,连接和金属特性评估和优化,包括相变,粉末冶金,金材术,功能分级的材料,复合材料,磁性材料,薄膜加工,疲劳,疲劳,正电子,快速固化,快速固化,金属失效分析和腐蚀。(有关其他信息,请参阅http://www.mse.utah.edu/。)