钢铁生产的主要投入材料是铁矿石(加工成烧结矿或球团)和废钢(二次原料)。用废钢替代主要原料(即矿石)可以避免炼铁这一能源和二氧化碳密集型步骤;然而,废钢供应和废钢中残留杂质导致的产品质量问题严重限制了这一步骤。此外,废钢成本较高也是非常重要的因素;随着对高质量废钢的需求增加,预计价格将进一步上涨。转向直接还原工厂(以取代高炉-碱性氧气炉 [BF-BOF] 路线)将导致对铁矿石球团的需求增加。目前的烧结厂允许使用各种含铁原料并回收大多数内部残余物,从长远来看,可能需要更换。这将需要新的材料循环和新的原材料供应链。必须在现场建造新的球团厂(导致高投资和空间
几个世纪以来,人类一直凝视着星星,被宇宙的奥秘所吸引。今天,随着科学技术的进步,深空旅行的梦想不再是科幻小说。本文探讨了冒险超越我们的星球,并在泰坦和欧罗巴等潜在可居住的卫星上建立存在。这些天体虽然远离地球,但为藏有生命和潜在维持人类殖民地的可能性提供了有趣的可能性。首先,让我们引用上一篇文章中的一些段落,讨论了冰冷的卫星与彗星之间关于寻找生命的起源的合理关系。1早期的太阳系,一种被称为原行星磁盘的漩涡状星云,为这种探索提供了令人信服的画布。这个宇宙摇篮中包含丰富的有机化合物和复杂的益生元分子的挂毯,这是陨石和彗星所证明的,这是那个古代时代的残余物所证明的。这些天体流浪者在他们体内带来了过去的窃窃私语,这是一种潜在的泛基督的罗塞塔石。
17 “生物质的传统用途”是指使用当地固体生物燃料(木材、木炭、农业残余物和动物粪便)进行燃烧,使用基本技术和解决方案,例如传统的开放式炉灶和壁炉。此类解决方案的低转换效率会产生不利的环境影响,此外还会造成室内污染,危害健康。由于其非正式和非商业性质,很难估计此类做法和解决方案所消耗的能量,这些做法和解决方案在发展中国家部分地区的家庭中仍然很普遍。就本报告而言,“生物质的传统用途”是指经济合作与发展组织 (OECD) 以外国家居民对主要固体生物燃料和木炭的消费。尽管 OECD 国家也以低效率使用生物质(例如,在壁炉中燃烧劈开的原木),但此类用途不包括在本报告中引用的传统生物质用途中;相反,它被报告为现代用途。现代生物能源——与太阳能光伏、太阳能热能、地热能、风能、水能和潮汐能一起——是本报告分析的“现代可再生”能源之一。
灭火介质 合适的灭火介质:干粉、水雾、二氧化碳、泡沫 出于安全原因不合适的灭火介质:水喷射 附加信息:采用适合周围环境的灭火措施。 物质或混合物引起的特殊危险 不要吸入气体/蒸气。 该产品易燃。燃烧会产生有害和有毒烟雾。 在安全条件下关闭或停止释放的物质/产品。 用水喷雾冷却危险的容器。 由于制剂中含有有机化合物,燃烧会产生浓密的黑烟。吸入危险的分解产物可能会对健康造成严重损害。 不要将化学污染的水排入下水道、土壤或地表水中。必须采取足够的措施来保留用于灭火的水。 根据当地法规处理受污染的水和土壤。 对消防员的建议 特殊防护设备:佩戴自给式呼吸器。 更多信息:撤离该区域所有不必要的人员。从最大距离灭火。将灭火措施扩展到周围环境。按照官方规定处理火灾残余物和受污染的灭火水。
随着粮食生产过程中产生的浪费,对粮食的需求也随之增加。大米很受欢迎,但如果管理不当,农工业残余物(如稻草和稻壳)就会成为问题。然而,可再生能源需求不断增长,事实上,稻米残渣链(如纤维素、木质素、半纤维素、碳和二氧化硅)可以转化为:燃料、发电、天然气生产、造纸和用于生产真菌和建筑材料的肥料。全球范围内缺乏稻米残渣管理的工业实施。在这种情况下,我们更密切地观察了哥伦比亚当地地区的水稻种植。本研究的目的是介绍当前的市场、挑战以及将循环经济纳入科尔多瓦省稻米市场的适当管理残渣的建议。这项研究是通过对稻米作物废物管理方案的科学和全面见解进行的。文章的选择标准是水稻生产、稻谷的主要成分、稻草和稻壳以及水稻系统中的废物处理。农民、研究人员、联合会、行政部门和管理人员需要努力改善土壤的养分、作物的质量以及残留物的管理,这些残留物包括留在工厂的残留物和留在
抽象是一种有效的方法,用于快速分析物种关系,物种组成,以及与性状数据库(社区生物多样性的功能元素)结合使用,是DNA metabarcoding。传统的评估物种丰富度和丰度的方法受到分类识别的限制,可能会损害或破坏栖息地,并可能依靠使得难以找到小型或难以捉摸的物种的技术,从而对整个社区进行了估计。通过使用高通量测序(HTS)技术,该技术可以对与环境和社区样本收集的DNA条形码相关的数据进行顺序和提取数据。一种称为Metabarcoding的不断发展的技术利用了大量的DNA条形码序列和改进的DNA测序技术的吞吐量。脊椎动物饮食的分析是DNA元法编码最早的应用之一,该技术对于理解植物 - 授粉关系仍然有效。DNA研究的范围受到环境DNA降解的限制,尤其是在温暖的热带地区,经常仅存在很少的遗传物质残余物。DNA metabarcoding是一种仍在开发中的新技术。随着技术的发展和协议变得更加标准化,可以预期该方法将持续一段时间。元法编码预计将成为监测生态学和全球保护研究的关键工具,因为它得到了改进和更频繁的使用。关键字DNA元法编码,生物多样性,条形码,EDNA,METABARCODING,HTS
近年来,混凝土技术研究领域取得了长足的进步,其主要发展方向有两个:对卓越力学性能的不懈追求和对可持续性的日益重视(Li,2019)。在工程范式不断发展以及对能够承受极端环境和负载条件的弹性基础设施的需求不断增长的背景下,提高混凝土的力学性能对于增强现代建筑的结构完整性和安全性至关重要(Gong et al.,2023;Yu et al.,2024)。同时,工业化的不断推进产生了大量废物和副产品,这些废物和副产品通常被送往垃圾填埋场,从而加剧了空气污染并增加了碳排放。因此,开发可持续混凝土材料和结构已成为减轻环境负担和实现碳中和的关键解决方案。这种模式转变不仅符合全球应对气候变化的要求,而且为废料的创新增值利用开辟了有希望的途径。然而,高性能混凝土材料的发展之路往往充满挑战,特别是材料成本高昂以及生产过程中产生的碳排放,这阻碍了它们在结构工程中的广泛应用。为了克服这些障碍,研究人员将重点放在工业、城市和农业残余物或副产品的研究领域,探索它们作为混凝土关键成分(包括水泥基粘合剂、骨料和纤维增强材料)的部分替代品的潜力(Xiang 等人,2023 年;Merli 等人,2020 年)。通过整合废弃物,可以降低高性能混凝土的成本和碳足迹,同时促进循环经济的原则。
公司重点关注 Energy Vault 的明确市场需求:全球对清洁能源的需求正在增长,根据 IRENA 最近的一份报告,到 2050 年,可再生能源预计将占总能源发电量的 90%。为支持这一转变,电网规模的能源存储容量将需要在未来十年内增加十倍,预计在此期间的投资将超过 2700 亿美元。虽然需求预计将继续增长,但目前的存储解决方案尚不够;抽水蓄能(约占当前全球存储容量市场的 90%)和化学电池都面临着可扩展性、平准化经济性、安全性和环境风险方面的重大挑战。重大能源存储突破:Energy Vault 开发了一个重力能源存储平台,该平台旨在具有成本效益、可靠性、操作安全和环境可持续性,以超越替代能源并充分满足市场需求。它的灵感来自依靠重力来储存和释放能量的抽水蓄能电站,并结合了 Energy Vault 自身的材料科学和软件创新:它用定制的复合块代替水,这些复合块由当地采集的土壤或废料制成,可以升降以按需储存和释放能量。该专有系统由 Energy Vault 支持 AI 的软件平台协调,该平台结合了先进的计算机控制和机器视觉。最终结果是电力和存储容量的弹性供应,系统旨在为短期和长期存储提供更大的运营灵活性、高往返效率、更低的资本和运营费用,并且由于存储介质不会随着时间的推移而退化,因此总体资产效率高于竞争对手。迅速扩张的全球蓝筹业务:在过去两年中,Energy Vault 与大型全球公用事业公司和独立电力生产商密切合作,以优化其能源存储技术平台,确保额外的灵活性并满足更高的功率和灵活的持续时间需求。在 2020 年成功将其首个商业规模的 5 兆瓦储能系统接入瑞士国家电网后,Energy Vault 与全球一些最大的公用事业公司和独立电力生产商完成了全面的运营尽职调查,特别关注辅助服务性能、系统往返效率和连续电力调度协议。所有这些核心和成熟的技术元素都被纳入其最新设计的模块化、灵活、功率更高、紧凑的产品架构——新的 EVx™ 平台中,该平台于今年早些时候与沙特阿美公司共同发布。EVx™ 预计拥有 35 年的技术寿命,80-85% 的往返效率和灵活性可满足更高功率和更短持续时间存储应用的需求,同时无缝支持更长持续时间的需求,两种情况下的平准化成本都很低。由于该系统不需要 HVAC 来运行,也不受工作温度范围的限制,因此它被设计为在环境温度较高的沙漠等更极端的天气环境中高效运行。在短期内,Energy Vault 拥有大量针对其新平台的客户参与和意向书,包括八份已执行的协议和意向书,总计超过 1,200 MW 小时的存储量,另有正在谈判的数 GW 小时储能项目预计将在未来 12-24 个月内开始部署。合并后的公司目前预计将在 2022 年开始产生确认收入,从中长期来看,批量部署、进一步的技术整合和规模经济将对其经营业绩产生积极影响。加速清洁能源转型,同时消除环境责任:Energy Vault 正在通过采用基于可回收性和环境可持续性的循环经济供应链方法来解决现有能源发电资产产生的废物问题。该公司的技术能够回收废弃物,例如煤炭燃烧残余物和退役风力涡轮机叶片的玻璃纤维(如之前与 Enel Green Power 联合发布的),否则这些废弃物最终将被填埋。通过利用先进的材料科学与 CEMEX 的材料部门合作,该公司的技术能够回收废弃材料,例如煤炭燃烧残余物和退役风力涡轮机叶片的玻璃纤维(如之前与 Enel Green Power 联合发布的),否则这些材料最终将被填埋。通过利用先进的材料科学与 CEMEX 的材料技术合作,该公司的技术能够回收废弃材料,例如煤炭燃烧残余物和退役风力涡轮机叶片的玻璃纤维(如之前与 Enel Green Power 联合发布的),否则这些材料最终将被填埋。通过利用先进的材料科学与 CEMEX 的材料技术合作,
招聘广告 爱尔兰戈尔韦大学工程/机械工程学院现招聘全职、固定期限博士后研究员/研究助理(先进制造(3D 打印)专业),欢迎符合条件的候选人申请。 大学致力于抓住混合工作机会,建设更具活力、更灵活、反应更快的大学,同时保持强大的教学、学习、研究标准和高生产力。大学将继续成为所有员工的主要工作场所,但个人混合安排请求可与直线经理结合大学混合工作政策进行审查。 该职位由爱尔兰企业局/建筑创新中心资助,有效期从 2024 年 11 月 1 日起至合同结束日期 2025 年 6 月 30 日。 项目信息: 背景:建筑行业依赖水泥基材料,但面临着延展性低、抗拉强度弱和易开裂等挑战。传统钢筋易受腐蚀,需要精确放置以防止水泥基质开裂时失效。聚合物/复合材料增强材料是一种耐用、无腐蚀的替代品。塑料和复合材料废弃物(如包装膜和工业残余物,如风力涡轮机叶片、航空航天部件)对环境污染贡献巨大。填埋会破坏生态系统,而焚烧会释放温室气体和毒素,这凸显了可持续废物管理解决方案的必要性。
coelacanth,Gingko,Tuatara等遗物是以前在生态和分类学上更多样化的谱系的残余物。它提出了为什么它们目前贫穷,生态限制并且通常容易灭绝的问题。估计杂合性水平和人口统计学历史可以指导我们对遗物物种的进化史和保护性的理解。然而,与脊椎动物相比,很少有研究重点是遗物无脊椎动物。我们对Baronia brevicornis(鳞翅目:木瓜科)的基因组进行了测序,该基因组是一种濒危物种,是所有燕尾蝴蝶的姐妹物种,是所有现存蝴蝶中最古老的谱系。从干燥的标本中,我们能够同时生成长阅读和短读数据,并作为男爵的基因组为406 MB的基因组。与其他燕尾黄油蝇相比,我们发现了相当高的杂合性(0.58%),这与其濒危和危险状态形成鲜明对比。考虑到重组与突变的高比例,人口统计学分析表明,在过去一百万年前开始的有效人口规模急剧下降。此外,男爵基因组用于研究乳头状科中的基因组大小变异。基因组大小主要是通过可转座的元素活动来解释的,这表明大基因组似乎是燕尾蝴蝶中的一个衍生特征,因为最近的可转座元素活动是最近的,并且涉及物种之间不同的可替代元素类。第一个男爵基因组提供了一种资源,用于协助旗舰和遗物昆虫物种的保护以及了解吞咽基因组进化。