高沉积速率定向能量沉积工艺的主要挑战之一是材料沉积过程中产生的残余应力,这常常导致材料变形和性能不佳。适用于航空航天领域 DED 工艺的重要零件系列是薄壁部件,其特点是具有大基底表面积和肋状加强结构。在这里,基板可以设计为最终部件的一部分。基板集成到最终部件中可能会导致变形,这是由于加工过程中的残余应力释放造成的。因此,本文研究了各种基于粉末的激光金属沉积工艺参数和策略对增材制造的 Ti-6Al-4V 部件的残余应力状态以及加工过程中产生的应力释放的影响。分析是在加工过程中进行的,包括基板的在线应变测量。所采用的层去除方法允许基于分析和 FEM 模型确定加工区域特定的应力释放图。因此,计算了零件的初始残余应力状态,结果表明,尽管热处理解决了大部分残余应力,但在热处理零件中,根据处理过程中的零件夹紧情况,也发现了残余应力。此外,研究表明,靠近基材的层中存在显著的残余应力。
摘要:NF 3 的使用量每年都在显著增加。然而,NF 3 是一种温室气体,具有极高的全球变暖潜能值。因此,开发一种替代 NF 3 的材料是必需的。F 3 NO 被认为是 NF 3 的潜在替代品。在本研究中,研究了替代温室气体 NF 3 的 F 3 NO 等离子体的特性和清洁性能。对 SiO 2 薄膜进行了蚀刻,分析了两种气体(即 NF 3 和 F 3 NO)等离子体的直流偏移,并进行了残留气体分析。基于分析结果,研究了 F 3 NO 等离子体的特性,并比较了 NF 3 和 F 3 NO 等离子体的 SiO 2 蚀刻速率。结果表明,两种气体的蚀刻速率平均相差 95%,从而证明了 F 3 NO 等离子体的清洁性能,并证实了用 F 3 NO 替代 NF 3 的潜在益处。
摘要 — 目的:完全性四肢瘫痪会使人失去手部功能。辅助技术可以提高自主性,但用户仍然需要符合人体工程学的界面来操作这些设备。尽管四肢瘫痪的人手臂瘫痪,但他们可能仍保留着残留的肩部运动。在这项研究中,我们探索了这些运动作为控制辅助设备的一种方式。方法:我们用一个惯性传感器捕捉肩部运动,并通过训练基于支持向量机的分类器,将这些信息解码为用户意图。结果:设置和训练过程只需几分钟,因此分类器可以是用户特定的。我们对 10 名身体健全和 2 名脊髓损伤参与者测试了该算法。平均分类准确率分别为 80% 和 84%。结论:提出的算法易于设置,操作完全自动化,所取得的结果与最先进的系统相当。意义:手部功能障碍人士使用的辅助设备在用户界面上存在局限性。我们的工作提出了一种新方法来克服这些限制,即对用户动作进行分类并将其解码为用户意图,所有这些都只需简单的设置和培训,无需手动调整。我们通过对最终用户的实验证明了它的可行性,其中包括完全四肢瘫痪、没有手部功能的人。
应力强度因子 (SIF) 范围与疲劳裂纹扩展之间的相关性是应用于轻型结构的故障安全设计方法的有力工具。关键作用是精确计算疲劳载荷循环的 SIF。先进的材料加工可以塑造残余应力,使 SIF 计算成为一项具有挑战性的任务。虽然 SIF 叠加成功地解决了拉伸残余应力的考虑问题,但压缩残余应力的处理仍需澄清。这项工作展示了 SIF 叠加原理在包含高压缩残余应力的区域中的应用,这些区域会导致裂纹闭合效应。裂纹闭合取决于残余应力和施加应力的组合载荷,在本研究中被解释为裂纹几何形状的变化。因此,源(即施加或残余应力)与其结果(即相应的 SIF)之间的关系取决于源(即组合载荷)的相互作用。由于这种相互作用,残余应力引起的疲劳行为变化不能仅与残余或施加的 SIF 相关联。这项工作提出了应用 SIF 和残余 SIF 的两种替代定义,从而允许残余 SIF 或应用 SIF 与疲劳行为变化之间建立明确的相关性。
随着人脸识别系统 (FRS) 的部署,人们开始担心这些系统容易受到各种攻击,包括变形攻击。变形人脸攻击涉及两张不同的人脸图像,以便通过变形过程获得一个与两个贡献数据主体足够相似的最终攻击图像。可以通过视觉(由人类专家)和商业 FRS 成功验证所获得的变形图像与两个主体的相似性。除非此类攻击能够被检测到并减轻,否则人脸变形攻击会对电子护照签发流程和边境管制等应用构成严重的安全风险。在这项工作中,我们提出了一种新方法,使用新设计的去噪框架来可靠地检测变形人脸攻击。为此,我们设计并引入了一种新的深度多尺度上下文聚合网络 (MS-CAN) 来获取去噪图像,然后将其用于确定图像是否变形。在三个不同的变形人脸图像数据集上进行了广泛的实验。还使用 ISO-IEC 30107-3 评估指标对所提出方法的变形攻击检测 (MAD) 性能进行了基准测试,并与 14 种不同的最新技术进行了比较。根据获得的定量结果,所提出的方法在所有三个数据集以及跨数据集实验中都表现出最佳性能。
金属增材制造部件中的残余应力是一个众所周知的问题。它会导致样品在从构建板上取出时变形,并且对疲劳产生不利影响。了解打印样品中的残余应力如何受到工艺参数的影响对于制造商调整工艺参数或部件设计以限制残余应力的负面影响至关重要。在本文中,使用热机械有限元模型模拟增材制造样品中的残余应力。材料的弹塑性行为通过基于机制的材料模型来描述,该模型考虑了微观结构和松弛效应。通过将模型拟合到实验数据来校准有限元模型中的热源。将有限元模型的残余应力场与同步加速器 X 射线衍射测量获得的实验结果进行了比较。模型和测量的结果显示残余应力场具有相同的趋势。此外,结果表明,随着激光功率和扫描速度的改变,所产生的残余应力的趋势和幅度没有显著差异。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
GF-1 DNA/RNA 提取试剂盒适用于提取和纯化各式不同样品的 DNA/RNA 。 GF-1 试剂盒最主要的 GF-1 硅胶膜离 心柱能在高盐缓冲液的裂解帮助下有效地离心吸附 DNA/RNA 。硅胶膜离心柱法以及洗涤缓冲液可去除残余蛋 白质和各种杂质,让吸附在离心柱的 DNA/RNA 更进一步地被纯化。最后通过洗脱液把 DNA/RNA 洗脱下来。提 取的 DNA/RNA 可用在各种不同的后续实验。
使用综合建模框架研究了一种将激光粉末床熔合 (PBF-LB) 与层间打磨相结合的混合金属增材制造 (AM) 工艺,以提供新的见解,说明激光粉末床熔合工艺产生的不均匀微观结构和残余应力如何影响层间打磨过程中产生的诱导残余应力场。研究人员最近研究了类似的混合金属增材工艺导致的微观结构变化,然而,他们只是假设由此产生的微观结构对诱导残余应力有一定影响。此外,研究人员通过数值研究了打磨/滚压工艺参数对诱导应力的影响,但忽略了微观结构的影响,从而做出了均匀、各向同性的假设。这种做法抑制了对不均匀熔合层中可能存在的微观结构驱动的各向异性的预测。本文通过参数化研究了微观结构建模、固有残余应力映射和环境温度对混合金属增材工艺过程中诱导残余应力的影响。所展示的建模框架结合了激光粉末床熔合过程中产生的固有残余应力以及预测的微观结构,在随后的打磨模拟中阐明它们对打磨引起的残余应力的单独和综合影响。研究结果表明,对不均匀的 PBF-LB 微观结构进行建模会沿打磨表面引入塑性应变和残余应力的各向异性分布;沿处理过的表面平面应力分量的周期性与 PBF-LB 扫描线相重合。固有残余应力对打磨引起的残余应力的影响不太显著,但仍然可以观察到。升高的温度不仅会降低引起的压缩残余应力的幅度,而且还会导致沿扫描线和阴影空间预测的残余应力分量幅度变化较小。所提出的框架为微观结构和 PBF-LB 残余应力对打磨引起的应力的解耦影响提供了新的见解,而这些影响是无法通过实验技术区分的。然而,试样深度方向上的平均残余应力趋势以及抛光后的表面硬度值分别与文献中记录的X射线衍射和微压痕测量结果具有良好的一致性。
附加控制措施 授权官员要求立即就位,重新评估残余风险 (和签名) (注释 10) 在任务/活动/流程开始之前确定残余风险可容忍程度。 (注释 6) (详情如下) (注释 8) 指挥官、经理或 ALARP 负责人的姓名和日期 (注释 10) 级别/职级和岗位/角色 是/否? (注释 7) 重新评估残余风险可容忍程度。 (注释 6) (详情如下) (注释 8)
氢基能源载体,包括氢气、氨和合成碳氢化合物,有望在《巴黎协定》目标的背景下帮助减少残余二氧化碳排放,尽管它们的潜力尚未完全明确,因为它们与电力、生物燃料和碳捕获与储存 (CCS) 等其他缓解方案具有竞争力和互补性。这项研究旨在使用一个详细的能源系统模型,探索氢在不同缓解情景和技术组合下在全球能源系统中的作用,该模型考虑了包括氢基能源载体的转换和使用在内的各种能源技术。结果表明,在 2 ◦ C 情景下,到 2050 年,氢基能源载体在全球最终能源需求中的份额通常仍不到 5%。尽管如此,在特定条件下,此类载体有助于消除工业和运输部门的残余排放。在对应于 1.5 ◦ C 变暖的严格缓解情景和没有 CCS 的情景下,它们的份额将增加到 10-15%。运输业是最大的消费行业,占氢气产量的一半或更多,其次是工业和电力行业。除了直接使用氢气和氨之外,由氢气和从生物质或直接空气中捕获的碳转化而成的合成碳氢化合物也是颇具吸引力的运输燃料,占所有氢基能源载体的一半。扩大电气化和生物燃料的使用是另一种常见的成本效益战略,这揭示了整体政策设计的重要性,而不是过度依赖氢气。