摘要:上一届政府间气候变化专门委员会 (IPPC) 评估报告强调,减少二氧化碳排放的行动迄今为止未能有效实现 1.5 C 限制,需要采取激进措施。废弃生物质的升级、电力到 X 范式和氢等创新能源载体等解决方案可以为向低碳能源系统的过渡做出有效贡献。在此背景下,本研究的目的是通过研究厌氧消化与热化学转化过程的创新整合优势来改进湿残余生物质的氢气生产过程。此外,该解决方案集成到由电网和光伏电站 (PV) 组成的混合电源中,并由热能存储 (TES) 系统提供支持。通过 Simulink/Simscape 模型仔细评估了工厂的性能及其输入能源需求(将电力需求分为光伏系统和国家电网)。初步评估显示,该工厂的氢气产量表现良好,达到 5.37% kg H2 /kg 生物质,远高于单一工艺的典型值(约 3%)。这一发现表明生物和热化学生物质增值路线之间存在良好的协同作用。此外,热能存储显著提高了转化工厂的独立性,几乎将电网的能源需求减少了一半。
1 英国布里斯托大学 HH Wills 物理实验室器件热成像与可靠性中心 (CDTR),Tyndall Avenue,布里斯托 BS8 1TL,英国。2 中国科学院半导体研究所超晶格与微结构国家重点实验室,北京 100083,中国。3 中国科学技术大学纳米科学与技术研究所,合肥 230026,中国。4 上海高压科学与技术先进研究中心,上海 201203,中国。5 哈尔滨工业大学理学院,深圳 518055,中国。 6 北京工业大学光电子技术教育部重点实验室,北京 100124,中国 7 大阪市立大学电子信息系统系,大阪住吉杉本 3-3-138,日本 558-8585 8 大阪都立大学工程研究生院,大阪住吉杉本 3-3-138,日本 558-8585
使用综合建模框架研究了一种将激光粉末床熔合 (PBF-LB) 与层间打磨相结合的混合金属增材制造 (AM) 工艺,以提供新的见解,说明激光粉末床熔合工艺产生的不均匀微观结构和残余应力如何影响层间打磨过程中产生的诱导残余应力场。研究人员最近研究了类似的混合金属增材工艺导致的微观结构变化,然而,他们只是假设由此产生的微观结构对诱导残余应力有一定影响。此外,研究人员通过数值研究了打磨/滚压工艺参数对诱导应力的影响,但忽略了微观结构的影响,从而做出了均匀、各向同性的假设。这种做法抑制了对不均匀熔合层中可能存在的微观结构驱动的各向异性的预测。本文通过参数化研究了微观结构建模、固有残余应力映射和环境温度对混合金属增材工艺过程中诱导残余应力的影响。所展示的建模框架结合了激光粉末床熔合过程中产生的固有残余应力以及预测的微观结构,在随后的打磨模拟中阐明它们对打磨引起的残余应力的单独和综合影响。研究结果表明,对不均匀的 PBF-LB 微观结构进行建模会沿打磨表面引入塑性应变和残余应力的各向异性分布;沿处理过的表面平面应力分量的周期性与 PBF-LB 扫描线相重合。固有残余应力对打磨引起的残余应力的影响不太显著,但仍然可以观察到。升高的温度不仅会降低引起的压缩残余应力的幅度,而且还会导致沿扫描线和阴影空间预测的残余应力分量幅度变化较小。所提出的框架为微观结构和 PBF-LB 残余应力对打磨引起的应力的解耦影响提供了新的见解,而这些影响是无法通过实验技术区分的。然而,试样深度方向上的平均残余应力趋势以及抛光后的表面硬度值分别与文献中记录的X射线衍射和微压痕测量结果具有良好的一致性。
利用拉伸桥中的横向起皱现象来表征超薄膜 (<100 nm) 的泊松比和残余应变。该测试方法利用残余应力驱动结构和易于复制的洁净室制造和计量技术,可无缝整合到薄膜生产装配线上。独立式矩形超薄膜桥采用可产生可重复横向起皱图案的尺寸制造。基于非线性 Koiter 板壳能量公式进行数值建模,将泊松比和残余应变与测得的起皱变形关联起来。泊松比会影响峰值幅度,而不会显著改变皱纹的波长。相比之下,应变会同时影响波长和幅度。使用 65 nm 厚的铜膜演示了概念验证。测量结果显示泊松比为 0.34 ± 0.05,拉伸残余应变为 (6.8 ± 0.8)x 10 − 3。测量的残余应变与使用相同薄膜的交替残余应力驱动测试结构测得的残余应变 (7.1 ± 0.2)x 10 − 3 高度一致。
摘要:激光冲击强化 (LSP) 已被用于通过激光金属沉积 (LMD) 来改善已修复的航空发动机部件的机械性能。本研究考察了横截面残余应力、微观结构和高周疲劳性能。结果表明,在激光熔化沉积区 200 µ m 深度处形成了 240 MPa 的压缩残余应力层,显微硬度提高了 13.1%。电子背散射衍射 (EBSD) 和透射电子显微镜 (TEM) 分析的结果表明,LSP 后取向差增加,位错特征明显,有利于提高疲劳性能。高周疲劳数据显示,与原 LMD 样品相比,LMD+LSP 样品的疲劳性能提高了 61%。因此,在航空航天领域,LSP 和 LMD 是修复高价值部件非常有效且很有前途的技术。
高沉积速率定向能量沉积工艺的主要挑战之一是材料沉积过程中产生的残余应力,这常常导致材料变形和性能不佳。适用于航空航天领域 DED 工艺的重要零件系列是薄壁部件,其特点是具有大基底表面积和肋状加强结构。在这里,基板可以设计为最终部件的一部分。基板集成到最终部件中可能会导致变形,这是由于加工过程中的残余应力释放造成的。因此,本文研究了各种基于粉末的激光金属沉积工艺参数和策略对增材制造的 Ti-6Al-4V 部件的残余应力状态以及加工过程中产生的应力释放的影响。分析是在加工过程中进行的,包括基板的在线应变测量。所采用的层去除方法允许基于分析和 FEM 模型确定加工区域特定的应力释放图。因此,计算了零件的初始残余应力状态,结果表明,尽管热处理解决了大部分残余应力,但在热处理零件中,根据处理过程中的零件夹紧情况,也发现了残余应力。此外,研究表明,靠近基材的层中存在显著的残余应力。
a 宾夕法尼亚州立大学材料科学与工程系 b 宾夕法尼亚州立大学机械工程系 c 阿贡国家实验室 X 射线科学部
观察到 160°C 的温度会略微降低疲劳寿命,这可能与马氏体时效钢的强度在 160°C 时略微降低有关 []。此外,正如预期的那样,带有机加工通道的样品在检查前没有破损样品,因此效果最佳。垂直样品首先断裂,而倾斜和水平样品的粗糙度较高。断裂分析表明,在部件核心和轮廓之间的垂直样品上有许多大于 100 微米的缺陷(图 12a 和 b)。这些缺陷在水平和 45° 样品上也可见,但数量较少。同样的缺陷也在显微照片上可见(图 12c)。因此,即使粗糙度和夹杂物也存在,起始点的根本原因是缺陷的存在
通讯作者:Christine M. Smudde 加州大学材料科学与工程系 One Shields Ave. Davis, CA 95616, USA 电话:(714) 356-0477 电子邮箱:cmsmudde@ucdavis.edu
金属增材制造部件中的残余应力是一个众所周知的问题。它会导致样品在从构建板上取出时变形,并且对疲劳产生不利影响。了解打印样品中的残余应力如何受到工艺参数的影响对于制造商调整工艺参数或部件设计以限制残余应力的负面影响至关重要。在本文中,使用热机械有限元模型模拟增材制造样品中的残余应力。材料的弹塑性行为通过基于机制的材料模型来描述,该模型考虑了微观结构和松弛效应。通过将模型拟合到实验数据来校准有限元模型中的热源。将有限元模型的残余应力场与同步加速器 X 射线衍射测量获得的实验结果进行了比较。模型和测量的结果显示残余应力场具有相同的趋势。此外,结果表明,随着激光功率和扫描速度的改变,所产生的残余应力的趋势和幅度没有显著差异。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。