1.1 超大(16 加仑)水套 - 每个腔室 不锈钢外壁衬有太空时代隔热材料,可提供 R5.0 等级,最大限度地减少热量损失。大型 16 加仑(60.56 升)水套利用水,这是大自然最好的“散热器”之一。其高保温能力使其成为环绕腔室以获得温度均匀性的理想介质。事实上,材料保温能力(称为比热)以水为比较标准。环绕腔室的大型水套允许水在夹套内循环,产生 i0.2'C 的温度均匀性。质量越大,腔室内受外界环境波动的影响越小。它还增加了机柜稳定性,以促进振动敏感细胞的生长。
表 A–1 摩尔质量、气体常数和临界点性质 表 A–2 各种常见气体的理想气体比热 表 A–3 常见液体、固体和食物的性质 表 A–4 饱和水 - 温度表 表 A–5 饱和水 - 压力表 表 A–6 过热水 表 A–7 压缩液态水 表 A–8 饱和冰 - 水蒸气 图 A–9 水的 Ts 图 图 A–10 水的 Mollier 图 表 A–11 饱和制冷剂-134a - 温度表 表 A–12 饱和制冷剂-134a - 压力表 表 A–13 过热制冷剂-134a 图 A–14 制冷剂-134a 的 Ph 图 图 A–15 纳尔逊-奥伯特广义压缩性图表 表 A–16 高海拔大气的性质 表 A–17 空气的理想气体性质 表 A–18 氮气、N2 的理想气体性质 表 A–19 氧气、氧气
研究 她的研究领域是材料物理学。这是一个高度跨学科的领域,需要从物理学、化学、材料科学和工程学的角度进行研究。她的研究目标是应用材料合成(通常在极端条件下)、成分调整和晶体生长(更好的晶体通常是一种新材料)的实验工具来解决先进功能材料中的前沿问题。她的努力致力于 (1) 开发具有有趣特性的新型量子材料(超导性、量子磁性、非平凡拓扑、热电和多铁性),(2) 研究物理特性:电荷、自旋和热传输、磁化、比热、微观(磁力显微镜、扫描隧道显微镜、透射电子显微镜)和光谱(角分辨光发射和中子散射)测量,以及 (3) 与理论家/计算科学家合作,以在原子层面上理解观察到的现象。她的研究成果已发表 255 多篇经过同行评审的期刊文章,被引用超过 11,000 次。
准一维(Q1D)自旋链体系由于其量子磁性而在高密度信息存储设备、量子信息和计算机中有着巨大的潜在应用。人们在 ANb 2 O 6(A = Mn、Fe、Co 或 Ni)化合物中研究了其低维磁行为,其结构和磁性非常有趣,因为该系统呈现出弱相互作用的伊辛链,从而导致了这种准一维磁序。我们的研究结合了比热和磁测量;X 射线和中子衍射(ND)。在这项工作中,我们提出了一种 Co/Ni 正交结构,称为铌矿,它与 Pbcn 空间群结晶,其分子式为 Co 0.4 Ni 0.6 Nb 2 O 6 。Co 取代 Ni 导致晶格体积连续减小,从而保持正交晶体结构。磁化率和比热测量表明,由于链间相互作用较弱,在 3.4 K 时会出现反铁磁序。磁性离子的部分取代往往会改变在 CoNb 2 O 6 和 NiNb 2 O 6 中观察到的磁序。最后,我们展示了这种磁结构随 Ni-Co 取代而发生的变化。
性能特性. . . . . . . . . . . . . . . . . . . . . . . . . . 6 机械特性. . . . . . . . . . . . . . . . . . . . . . . . . 6 极端温度下的拉伸强度和弯曲强度. . . . . . . . . . . . . 6 超高温度. . . . . . . . . . . . . . . . . . . . . . . 6 根据 ASTM 测试方法 D 638 的拉伸特性. . . . . . . . . 7 超低温. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 抗冲击性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 热重分析. . . . . . . . . . . . . . . . . . . . . . . . 12 长时间热暴露的影响. . . . . . . . . . . . . . . . . . . 12 UL 相对热指数. . . . . . . . . . . . . . . . . . . . . . 12 热老化后性能的保持. . . . . . . . . . . . . . . . . 12 比热. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 热导率. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 线性热膨胀系数 (CLTE) . . . . . . . . . . . . . . 13 抗蠕变性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 可燃性. . . . . . . ................. ... . . . . . . . . . . 16 点火特性 . . . . . . . . . . . . . . 16 UL 94 可燃性标准 . . . . . . . . . . . . . 17 水平燃烧测试 . . . . . . . . . . . . . 17 20 MM 垂直燃烧测试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 对汽车和航空液体的抵抗力. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................................................................................................................................... . . 21 恒定湿度下的平衡吸收 . . . . . 21 尺寸变化 . . . . . . . . . . . . 22 尺寸和属性的恢复 . . . . . . . . 22 机械和电气属性的变化 . . . . . 22 突然高温暴露的限制 . . . . 23 Weather-Ometer® 测试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 耐伽马辐射性 . . . . . . . . . . . . . . . . . . . . . . . . 24 电气性能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 TORLON 绝缘聚合物 . . . . . . . . . . . . . . . . . . . . . . . . 25 耐磨应用服务 . . . . . . . . . . . . . . . . . . . 26 TORLON PAI 耐磨等级介绍 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
摘要:本研究报告了空间群为I 4 1 md 的磁性外尔半金属候选材料NdAlGe单晶的成功生长。该晶体采用浮区技术生长,该技术使用五个激光二极管(总功率为2 kW)作为热源。为了确保在生长过程中稳定形成熔融区,我们采用了钟形分布的垂直辐射强度曲线。将电弧熔炼锭粉碎后的标称粉末在静水压力下成型,然后在由氧化钇稳定的氧化锆制成的氧气泵产生的超低氧分压(<10 − 26 atm)的氩气气氛中烧结进料棒和种子棒,加热至873 K。成功生长出长度为50 mm 的NdAlGe单晶。生长的晶体在 13.5 K 时表现出块状磁序。基本物理特性通过磁化率、磁化强度、比热、热膨胀和电阻率测量来表征。这项研究表明,磁序在 NdAlGe 中诱导各向异性磁弹性、磁熵和电荷传输。
M 值,潜热存储:27、35、55 或 75 BTU/ft² 库存设计温度:73°、76°、79°、(73/76)°F(库存)特殊订单熔点:-60°F 至 +350°F BioPCM® 比热:2.0– 2.5 J/gK 潜热:27–75 BTU/lb。毯子重量:0.30 至 0.80 磅/平方英尺 屋顶应用 – 100% 覆盖率 M 值,潜热存储:55 或 75 BTU/平方英尺 建议设计温度:85-100°F / 29-38°C(订购时请高于目标调节空间温度 ~25-35°F) 毯子重量:0.60 至 0.80 磅/平方英尺 外墙应用 – 外墙净覆盖率为 50-75% M 值,潜热存储:27、35 或 55 BTU/平方英尺(对于太阳辐射增益较高的墙体,建议使用 M51) 建议设计温度:~ 76°F / 25°C 或 84°F /29°C,(订购时请高于目标调节空间温度的下一个库存温度) 毯子重量:0.30 至 0.75 磅/平方英尺
化学计量体积LUH 2是一种顺磁金属,具有与简单金属相当的高电导率。在这里我们表明,通过磨削过程(即,由商业购买的LuH 2粉末制成的CP颗粒)在粒度或表面条件下修改晶粒尺寸或表面条件的敏感性变化,其较高金属粉仍然是金属的,但仍表现出数千倍的电阻性,而较高的电阻率则越来越多,而较高的电阻却增强了较高的势力,而又一次的势力又增强了空中的增强性,并且又增强了空中的增强性。对于这些CP样品,有趣的是,我们有时可以在高温下观察到突然的电阻率下降,这也显示出对磁场和电流的依赖。可变温度XRD,磁敏感性和比热的测量不包括观察到的电阻率下降的结构,磁性和超导转换的可能性。相反,由于氢化计量学的修饰或氧气/氮的污染,我们暂时将上述观察结果归因于晶体表面上的绝缘层的存在。金属晶粒通过绝缘表面的渗透可以解释电阻率的突然下降。因此,目前的结果要求谨慎地认为电阻率下降是超导性的,并使背景减法无效分析电阻率数据。
本研究旨在评估用于第三代聚光太阳能发电系统中热能吸收器的粒子的光学特性。其特性包括使用积分球进行 UV-Vis NIR 测量以测量太阳吸收率,同时使用反射计测量热发射率。通过结合吸收率和发射率数据,计算出太阳吸收效率。利用激光闪光分析、差示扫描量热法和热重分析来确定热导率和比热。最初测量的粒子的太阳吸收率为 0.90。在 1000 ◦ C 的空气中暴露后,它降至 0.73。然而,经过还原过程,粒子恢复了 0.90 的吸收率。热老化和恢复重复多次,始终达到 0.90 的吸收率。粒子的热导率范围为 0.50 至 0.88 W/(mK)。发现太阳光吸收率受颗粒中氧化铁类型的影响。以赤铁矿为主的颗粒太阳光吸收率降低,而含有磁铁矿、方铁矿和铁的颗粒吸收率则增加。开发颗粒的估计成本比当前产品低十倍以上。考虑到组件成本对平准化电力成本 (LCOE) 有显著影响,与其他产品相比,此次降价相当于 LCOE 下降 8%。低成本的热能介质有望在第三代聚光太阳能发电系统中降低 LCOE。
3D打印构成了技术的进步,通过使制造商能够从数字蓝图制造复杂的定制组件来彻底改变当代工业。此外,3D打印与尖端材料的融合导致了具有多种应用范围的诱人元素。因此,这项工作描述了与Yb 3 +和ER 3 +掺杂的发光材料Nayf 4的合并,并嵌入树脂中以进行3D打印以创建电动发光齿轮。制造的发光齿轮利用了525 nm(2 H 11/2→4 I 15/2)和550 nm(4 s 3/2→4 I 15/2)的ER 3 +排放之间的强度比,这些强度比热耦合,以检测齿轮通过Friction的较小温度变化。该技术可以与热电视互补,证明对于监测使用热摄像机测量或直接接触温度计的元素中的温度特别有价值。发现光学测量值与热电视相比,温度读数具有增强的(统计)精度,发光温度计为𝜹 t = 0.07 k,而热摄像机则与𝜹 t = 0.3 k相比。这项工作可以使用具有令人兴奋的特性的3D打印和材料来激发新的研究方向,从而促进当代工业技术中的创新解决方案。
