Q1 1以下哪种存储方法的工作原理类似于燃气轮机发电厂的周期? 选项A:SMES选项B:飞轮选项C:泵送水力发电选项D:压缩空气储能2以下哪项不用作明智的TES系统的存储材料? 选项A:岩石选项B:钢筋混凝土选项C:ICE选件D:矿物油3哪些因素决定了储存在明智的TES系统中的能量量? 选项A:存储材料的体积,温度和比热容量选项B:质量,温度和储存材料的特定热容量选项C:质量,温度变化和存储材料的特定热容量选项D:体积,温度变化和储存材料的特定热容量4如何增加存储在飞轮储能储能技术转子中的能量? 选项A:提高转子选项的角速度B:减少转子选项的质量C:增加转子选项选项的体积D:增加转子5的特定电阻5哪种存储技术涉及在等体相变的材料内部能量增加材料内部能量的形式? 选项A:泵送水力发电储能选项B:明智的热量储能选项C:潜在的热量储能选项D:压缩空气储能6可以通过物质或能量流(热量,热量,工作等)产生的最大工作量(也称为可用性))Q1 1以下哪种存储方法的工作原理类似于燃气轮机发电厂的周期?选项A:SMES选项B:飞轮选项C:泵送水力发电选项D:压缩空气储能2以下哪项不用作明智的TES系统的存储材料?选项A:岩石选项B:钢筋混凝土选项C:ICE选件D:矿物油3哪些因素决定了储存在明智的TES系统中的能量量?选项A:存储材料的体积,温度和比热容量选项B:质量,温度和储存材料的特定热容量选项C:质量,温度变化和存储材料的特定热容量选项D:体积,温度变化和储存材料的特定热容量4如何增加存储在飞轮储能储能技术转子中的能量?选项A:提高转子选项的角速度B:减少转子选项的质量C:增加转子选项选项的体积D:增加转子5的特定电阻5哪种存储技术涉及在等体相变的材料内部能量增加材料内部能量的形式?选项A:泵送水力发电储能选项B:明智的热量储能选项C:潜在的热量储能选项D:压缩空气储能6可以通过物质或能量流(热量,热量,工作等)产生的最大工作量(也称为可用性)涉及参考环境的平衡,定义为 - 选项A:能量选项B:焓选项C:Exergy选项D:Entropy
A c 横截面积,[ m 2 ] A s , A h 总传热面积,[ m 2 ] β 表面密度,[ m 2 /m 3 ] 或整体压力梯度,[ Pa/m ] C p 恒压比热,[ J/ ( kgK )] Co 库仑数 d h 水力直径,[ m ] δ 翅片厚度,[ m ] ϵ 热交换器效率或湍流耗散,[ s ] 或翅片间距比 f c 核心摩擦系数 f 扇形 扇形摩擦系数 f 频率,[ Hz ] 或 Forschheimer 摩擦系数 G 质量流速,˙ m/A c , [ kg/ ( m 2 s )] γ 波纹间距比 h 对流膜系数 [ W/ ( m 2 K )] h f 压力损失,[ m ] η 0 , η f二次传热表面的有效性 j 科尔本系数 K c 入口损失系数 K e 出口损失系数 k 湍流动能,[ J/kg ] 或材料的热导率,[ W/ ( mK )] L , l 长度或翅片长度,[ m ] LMTD 对数平均温差,[ K ] M 马赫数 ˙ m 质量流量,[ kg/s ] µ 动态粘度,[ Pa · s ] N st 斯坦顿数 Nu 努塞尔特数 ν 运动粘度,[ m 2 /s ] P 周长,[ m ] 或流体压力,[ Pa ] Pr 普朗特数 Re 雷诺数 ρ 密度,[ kg/m 3 ] Q 或 ˙ Q 传递的热量,[ W ] Q 平衡 热交换器流之间的热平衡 Q 热 热交换器热侧发出的热量,[ W ] Q 冷热交换器的冷侧,[ W ] φ 流动面积与面面积之比或标准偏差 T 温度,[ K ] U 总传热系数 [ W/ ( m 2 K
1-D PCM 棒的横截面积,[m 2 ] 比热,[J kgK ⁄ ] 运行成本,[$ yr ⁄ ] 电价,[$ kWhr ⁄ ] 管材成本,[$ kg ⁄ ] PCM 材料成本,[$ kg ⁄ ] 管内传热系数,[W m 2 K ⁄ ] 总时间步数 电导率,[W mK ⁄ ] 管总长度,[m ] 平准化能源成本,[$ MWh ⁄ ] PCM 潜能,[kJ kg ⁄ ] 径向网格数 管长网格数 努塞尔特数 普朗特数 传热速率,[W] 传热速率,[W] HTF 总质量流速,[kg s ⁄ ] 环内半径,[m] 环状几何中的移动凝固前沿,[m]环形圆柱体 PCM 的热阻,[ m ] 圆柱体 PCM 内的热阻,[ KW ⁄ ] 导热流体内的热阻,[ KW ⁄ ] 雷诺数 温度,[ ℃ ] 边界冷却温度,[ ℃ ] 相变材料熔化温度,[ ℃ ] 管与圆柱体 PCM 之间的界面温度,[ ℃ ] 管内导热流体的速度,[ ms ⁄ ] 管壁厚度,[ mm ] 壳体厚度,[ mm ] 一维 PCM 棒的长度,[ m ] 每天运行小时数,[ hr ] 凝固时间,[ hr ] 移动凝固前沿,[ m ] 设备总寿命,[ yr ] 环形圆柱体 PCM 的轴长,[ m ] 两个坐标系之间的凝固前沿比率 密度,[ kg m 3 ⁄ ] 粘度,[ Pa ∙s ] 潜能储存系统的有效性矩形几何结构显热能分数因子 圆柱形几何结构显热能分数因子 差值或增量步长 泵效率
晶格和晶胞。布拉维晶格。晶面和方向。米勒指数。堆积能和结构。共价晶体和离子晶体。分子晶体。晶体结构中的缺陷。点缺陷和扩展缺陷。缺陷热力学。- 晶体结构:测定和分析干涉和衍射:一般概念。晶相衍射。劳厄定律和布拉格定律。傅里叶变换和互易晶格。单晶、多晶和纳米晶体。非晶相中的衍射。- 固态电子系统电场和磁场下的电荷载体和传输。自由电子和束缚电子。布洛赫定理和能带结构。电子的色散关系。态密度。费米-狄拉克分布。金属、半导体、绝缘体。纳米材料的应用。- 半导体和应用半导体中的电荷载体。电子、空穴及其运动。载流子浓度和质量作用定律。直接和间接带隙半导体。掺杂。一些半导体器件:pn结和二极管、晶体管。在光子学和电子学中的应用。- 晶格振动和热性质 晶格和分子振动:比较。振动色散关系。声学和光学分支。声子。振动态密度和德拜频率。固体中的振动光谱。固体中的比热。杜隆珀蒂定律。低温。- 介电和光学性质 极化率和介电函数。对电磁辐射的宏观响应。边界处的吸收、反射、弹性和非弹性扩散。洛伦兹模型。复折射率和介电函数。自由电子和等离子体。在能量学、催化和环境中的应用。激光在化学和材料科学中的应用。
Si 基光子集成电路 (PIC) 将光学活性元件单片集成在芯片上,正在改变下一代信息和通信技术基础设施 1。在寻找基本的直接带隙的过程中,人们对 IV 族半导体合金进行了深入研究,以获得电泵浦连续波 Si 基激光器。沿着这条路径,已经证明可以通过化学计量和应变工程将新开发的 GeSn/SiGeSn 异质结构的电子带结构调整为直接带隙量子结构,从而为激光提供光增益 2。在本文中,我们介绍了一种多功能电泵浦激光器,它在低温下发射近红外波长为 2.35 µm 的低阈值电流为 4 mA(5 kA/cm 2)。它基于 6 周期 SiGeSn/GeSn 多量子阱结构,沉积在具有弛豫 Ge 缓冲层的 Si 衬底上。通过定义一个圆形台面结构来制作小尺寸微盘腔激光器,该结构蚀刻穿过层堆栈直至 Si 衬底。随后,通过去除此区域的 Ge 缓冲层,将盘的边缘蚀刻 900 nm。剩余的 Ge 基座用作 p 接触区以及激光器的散热器(图 1 a、b)。在这个简单的结构中,由于 SiGeSn 的导热性较差,有源区的实际晶格温度比热浴 T b 高约 60K。但是,激光器在 T b =40K 以下以连续波 (CW) 模式工作,但也可以在 T b =77K 时以直接调制模式高效工作至 ns 脉冲。
第1课:介绍,基本原理和假设。简介和简短的历史笔记。经典微观描述。宏观描述和可观察物。合奏和liouville定理的概念。量子配方和量子Liouville的定理。统计物理学的假设。附录:不可逆性:时间的箭头。动力学系统和偏僻的理论。合奏的构造:Boltzmann的统计物理学。统计物理学以平衡为止。第2课:合奏理论。微型典型合奏和熵。规范合奏。分区功能。稳定性。大规范合奏。附录:经典限制的量子效应。第3课:波动,合奏的等效性和热力学极限。动机。能量的规范波动。粒子数量中的大规范波动。热力学极限。附录:大规范的能量波动。第4课:经典的理想系统。定义。玻尔兹曼天然气。玻尔兹曼气体的规范分区功能和热力学。分子结构:旋转,振动和电子自由度。附录:量子力学中的刚性转子。第5课:理想量子气的简介。简介。量子不可区分:玻色子和费米子。理想的量子系统。比热。理想量子气的状态方程。 弱退化的量子理想气体。 第6课:退化费米子系统。 退化理想的费米斯气体:费米能。 在低温下的状态方程。 相对论的退化费米亚气:白矮星的Chandrasekhar模型。 原子的统计模型:Thomas-Fermi模型。 完全退化相对论费米斯气体。 金属中的电子气体。 理想费米斯气体的有效性范围。理想量子气的状态方程。弱退化的量子理想气体。第6课:退化费米子系统。退化理想的费米斯气体:费米能。在低温下的状态方程。相对论的退化费米亚气:白矮星的Chandrasekhar模型。原子的统计模型:Thomas-Fermi模型。完全退化相对论费米斯气体。金属中的电子气体。。
在本文中,我们为基于空腔光学原理的原子力显微镜提供了力传感器。我们解释了力传感器的功能,设计,工具和表征。力传感器的机械部分由一个非常细的尖端组成。在悬臂底座附近是一个LC电路,其共振频率在4 - 5 GHz范围内。电感器由超导蜿蜒的纳米线组成,该纳米线在紧张时会改变其电感。因此,可以通过测量LC电路的谐振频率如何变化来检测到可以检测到的瓷砖的机械运动。机械运动产生了微波频谱中的边带。一种检测方法是基于由两个微波色调驱动的电路,而悬臂则由安装在传感器附近的压电振荡器附近靠近其质量共振。测量信号的幅度取决于悬臂运动和微波色调的相位差。制造中的关键步骤包括释放悬臂的释放,通过将基板从前侧和后侧蚀刻出来,以及在悬臂的自由端上沉积尖端。制造是在整个半导体晶圆上进行的,并具有高产量。在几毫升的温度下,以几个赫兹的顺序测量了光力耦合强度G 0。然而,由于存在非热波动力,因此无法对悬臂与LC电路的共振频率移动的耦合恒定机械运动进行准确的校准。我们还介绍了LC电路中的微波损耗在范围1中的变化。7 - 6 K.我们的电路表现出比热平衡准粒子预期的更高的损失,我们将其归因于电路介电。准粒子损失设定了我们电路可以达到的质量因素的上限,而不管拓扑是什么。此外,LC电路在电流和动力学之间表现出非线性关系,从而实现了机械边带的参数扩增。因此,提出的力传感器将力传感器(悬臂),检测器(LC电路)和参数信号放大器(通过LC电路的非线性)集成在一个和同一组件中。
对各种交叉技术(包括核相关和非核相关技术)的经济潜力和准备情况进行了评估,发现 2030 年之前开始建设的新核电厂的 LCOE 净减少量可达 28-38%,之后最多可减少 65%。短期效益主要来自几种降低资本成本的技术,例如抗震隔离(7-10%)、钢板复合材料和超高性能混凝土(6-8%)、机械部件的模块化结构(4-5%)和高强度钢筋(~2%),而传热涂层(~5%)是唯一具有可比影响的非资本技术。长期效益也主要归功于资本技术,其中大型金属部件的增材制造(3-9%)和海上选址(3-9%)占了大部分效益增长。现有核电站同样有望获利,改造后可在短期内节省相当于 6-8% 的 LCOE 成本,这主要归功于上述涂层。评估的其他技术包括事故容错燃料、先进仪器和控制、先进动力循环、嵌入、能量存储和机器人技术。自三哩岛核事故以来,美国核电站的夜间成本和施工时间增加了两倍,因此此类技术具有巨大的潜力来帮助陷入困境的行业。值得注意的是,这些估计不包括从积累的施工经验中学习到的知识,这可以额外将 LCOE 降低 20-40%,并且是小型模块化反应堆的驱动因素,或从布雷顿循环的次要目标等来源增加收入,这被发现是选择此类替代方案的最可能动机,以及能量存储,其中热存储被确定为最适合核电站。此外,一旦超过相对较低的阈值,传热涂层的耐久性就被认为比热性能对其可行性更重要。尽管上述值定义了可行的节省范围,但在实施过程中必须小心谨慎才能实现这些节省。例如,如果过快实施过多模块化结构,则可能会出现问题,因为它通常不如传统结构灵活。在最近的美国 AP1000 建设中观察到了这个问题。论文指导老师:Jacopo Buongiorno 东京电力公司教授、麻省理工学院核科学与工程系副主任、先进核能系统中心 (CANES) 主任 论文阅读者:David Petti 首席核科学家、研发主任和 INL 实验室研究员
发生热应力事件时:热应激对于强烈的基于牧场和牧场的动物可能是有问题的。对于乳制品动物,怀孕的奶牛经常在牧场系统上或有时在饲养场型系统上。其中一些环境不允许在热量事件期间进行管理干预的机会,就像许多在住房区域散布和风扇的禁闭系统一样。除了住房环境外,在怀孕的最后几个月中,许多干牛都被运输。Ani-Mals经历高温不利影响的常见时间是在运输过程中。运输是一种多面应力源,可以产生或加剧现有的热载荷。卡车设计会影响环境对动物的影响。动物的先前住房经验会增加运输过程中经历的热应激。其他压力源的影响,也影响了热量产生。例如,对动物的处理本身会增加体温。此外,由于温度湿度指数(THI)在车辆平稳期间增加(例如驾驶员,卡车检查站或过境点的膳食休息时间),所以这是一个时候需要用某种供应牛来容纳牛,因为THI可以接近关键范围。尽管已经对热应激对再生和牛奶产量的影响进行了广泛的研究,但很少研究研究了后来怀孕期间热事件对小牛发病率和死亡率的影响。这些痣在早期免疫防御措施中很重要。产前热应激对新生儿的影响:热应激对新生儿健康的影响开始。在怀孕期间经历热应力的牛出生的小牛通常比热中性环境中出生的犊牛小。在热应激或热应激后出生的犊牛的免疫力改变了。最近的数据表明,在高太阳负载(UV)期间,牛出生的犊牛中重要的免疫信号分子较少。另外,犊牛的免疫细胞的类型会因高紫外线条件而改变。研究表明,尽管在初乳或
1 使用交流电导率测量估计非晶态 Se 80 Te 20 和 Se 80 Te 10 M 10(M= Cd、In、Sb)合金中的局部态密度,N. Chandel、N. Mehta 和 A. Kumar,《电子材料杂志》,44 (2015) 2585-2591。2 多组分 Se 78-x Te 20 Sn 2 Bi x(0 ≤ x ≤ 6)硫属化物玻璃的一些热物理性质的成分依赖性,A. Sharma 和 N. Mehta,《材料科学杂志》,50 (2015) 210-218。 3 多组分 Se 78-x Te 20 Sn 2 Pb x 硫系玻璃的热物理性质 A.Sharma 和 N. Mehta,材料化学与物理,161 (2015) 35-42。 4 使用等转化方法研究锌掺入玻璃硒的非等温结晶,C. Dohare 和 N. Mehta,材料快报,138 (2015) 171-174。 5 相变材料的时间顺序概述,N. Mehta,高级科学与工程评论,4 (2015) 173-182。 6 使用交流电导率测量确定玻璃态 Se 98 M 2(M = Ag、Cd 和 Sn)合金中的缺陷态密度,A. Sharma 和 N. Mehta,《测量》,75 (2015) 69–75 7 玻璃态 Se 90 In 10-x Ag x 中的玻璃转变和结晶动力学,Karishma Singh、N. Mehta、SK Sharma、A. Kumar,《材料聚焦》,4 (2015) 457-463。8 Augis-Bennett 关系在确定某些富 Se 硫属化物玻璃中玻璃转变活化能的适用性,S. Saraswat、N. Mehta 和 SD Sharma,《材料研究与技术杂志》,5 (2016) 111-116。 9 玻璃态 Se 80-x Te 20 Sb x 合金在玻璃转变区比热测量的热分析,S. Saraswat、N. Mehta 和 SD Sharma,《相变》,89 (2016) 84-93。10 Se-Te-Sn-Ag 四元体系多组分硫属化物玻璃的一些热机械和介电性能研究,A. Srivastava 和 N. Mehta,《合金与化合物杂志》,658 (2016) 533-542。