在本文中,我们为基于空腔光学原理的原子力显微镜提供了力传感器。我们解释了力传感器的功能,设计,工具和表征。力传感器的机械部分由一个非常细的尖端组成。在悬臂底座附近是一个LC电路,其共振频率在4 - 5 GHz范围内。电感器由超导蜿蜒的纳米线组成,该纳米线在紧张时会改变其电感。因此,可以通过测量LC电路的谐振频率如何变化来检测到可以检测到的瓷砖的机械运动。机械运动产生了微波频谱中的边带。一种检测方法是基于由两个微波色调驱动的电路,而悬臂则由安装在传感器附近的压电振荡器附近靠近其质量共振。测量信号的幅度取决于悬臂运动和微波色调的相位差。制造中的关键步骤包括释放悬臂的释放,通过将基板从前侧和后侧蚀刻出来,以及在悬臂的自由端上沉积尖端。制造是在整个半导体晶圆上进行的,并具有高产量。在几毫升的温度下,以几个赫兹的顺序测量了光力耦合强度G 0。然而,由于存在非热波动力,因此无法对悬臂与LC电路的共振频率移动的耦合恒定机械运动进行准确的校准。我们还介绍了LC电路中的微波损耗在范围1中的变化。7 - 6 K.我们的电路表现出比热平衡准粒子预期的更高的损失,我们将其归因于电路介电。准粒子损失设定了我们电路可以达到的质量因素的上限,而不管拓扑是什么。此外,LC电路在电流和动力学之间表现出非线性关系,从而实现了机械边带的参数扩增。因此,提出的力传感器将力传感器(悬臂),检测器(LC电路)和参数信号放大器(通过LC电路的非线性)集成在一个和同一组件中。
主要关键词