耐电弧性 IPC-650 2.5.1 秒 242 秒 242 弯曲强度 (MD) IPC-650 2.4.4 kpsi 24 16 N/mm 2 165 弯曲强度 (CD) IPC-650 2.4.4 kpsi 15 8 N/mm 2 103 拉伸强度 (MD) ASTM D 3039 psi 16,800 N/mm 2 116 拉伸强度 (CD) ASTM D 3039 psi 11,000 N/mm 2 75.8 杨氏模量 (MD) ASTM D 3039 psi 10 6 N/mm 2 8,343 杨氏模量 (CD) ASTM D 3039 psi 10 6 N/mm 2 7,171 泊松比 (MD) ASTM D 3039 0.14 0.14 泊松比 (CD) ASTM D 3039 0.10 0.10 断裂应变 (MD) ASTM D 3039 % 1.6 % 1.6 断裂应变 (CD) ASTM D 3039 % 1.4 % 1.4 压缩模量 (Z 轴) ASTM D 695 (23ºC) kpsi 385 N/mm 2 2,650 剥离强度 (1 盎司 VLP) IPC-650 2.4.8 (热应力) 磅/英寸 12 N/mm 2.1 剥离强度 (1 盎司 VLP) IPC-650 2.4.8.3 (150ºC ) (高温) 磅/英寸 14 N/mm 2.5 剥离强度 (1 盎司VLP)IPC-650 2.4.8秒5.2.3 (Proc. Chemicals) 磅/英寸 11 N/mm 2.0 密度 (比重) gm/cm 3 2.28 gm/cm 3 2.28 比热 ASTM E 1269 (DSC) (100ºC) J/g/K 0.99 J/g/K 0.99 热导率 ASTM F 433 W/M*K 0.29 W/M*K 0.29 T d (热分解温度) IPC-650 2.4.24.6 2% 重量损失 ºC 528 ºC 528 T d (热分解温度) IPC-650 2.4.24.6 5% 重量损失 ºC 547 ºC 547 CTE (x) IPC-650 2.4.41 (>RT - 125ºC) ppm/ºC 10 8 ppm/ºC 8 热膨胀系数 (y) IPC-650 2.4.41 (>RT - 125ºC) ppm/ºC 13 10 ppm/ºC 10 热膨胀系数 (z) IPC-650 2.4.41 (>RT - 125ºC) ppm/ºC 108 104 ppm/ºC 108
将曲面上扁平线束的最小浸入与临界特征值度量联系起来 Santiago Adams 导师:Antoine Song 在现有文献中,第一个特征值在曲面上临界的度量与该曲面在任意维球面中的最小浸入之间存在着密切的联系。我们知道,对于具有临界度量的曲面,存在一组拉普拉斯算子的特征函数,它们定义了进入球面的最小浸入。我们旨在使用局部参数将该理论扩展到扁平线束特征截面的情况。也就是说,给定一个第一个特征值在线束上临界的度量,我们旨在使用其特征截面的升力来定义其通用覆盖在球面中的最小浸入,并更好地理解是否存在原始曲面进入球面的最小浸入。伊辛铁磁体在经典和量子极限下的热力学性质 Sophia Adams 导师:Thomas Rosenbaum 和 Daniel Silevitch 该项目旨在探测模型伊辛铁磁体 LiHoF 4 在经典和量子相变中的热力学性质。经典跃迁发生在临界温度 1.53 K 和零磁场下,而量子跃迁发生在零温度极限下 50 kOe 量级的临界横向磁场下。我们将使用比热数据来比较两个跃迁的临界指数及其之间的交叉。 一种使用基于分类器的生成器生成和预筛选蛋白质以确定结合亲和力的新方法 Victoria Adams 导师:Matt Thomson 和 Alec Lourenco 由于当前方法筛选蛋白质结合功效的速度和规模,测试新的工程结合蛋白设计非常无效。定量而不是定性筛选新蛋白质将进一步提高效率。 Thomson 实验室开发了一种高通量筛选方法,用于收集有关结合蛋白的信息并实现蛋白质设计。在我的项目中,我致力于开发一种使用蛋白质语言模型预筛选生成蛋白质的新方法。应用现有的蛋白质大型语言模型 (pLLM),例如进化尺度模型 (ESM) 和 AlphaFold 2 & 3,我正在研究一种生成蛋白质然后预筛选其结合亲和力的方法。我还有机会学习如何使用实验室的高通量筛选分析来实验性地测试蛋白质设计。到目前为止,我还没有完全开发的方法/模型,但我有一个需要微调的基本分类器,并且需要一个仍需要指定最佳参数的生成器。我希望能够完成这些编程改进,并可能能够在夏季结束前通过应用高通量筛选来测试它们。来自路径积分的时间类纠缠 Zofia Adamska 导师:John Preskill 和 Alexey Milekhin 大多数量子力学形式主义都从不同的角度来看待空间和时间,这从相对论物理学的角度来看似乎是不自然的。为了解决这种不对称性,我们提出了一种时空密度矩阵的新定义,该定义源自路径积分方法,以更好地分析时空中的量子信息。我们的动机基于相对论量子场论中的观察,其中该密度矩阵的 Renyi 熵与通过从空间类分离到时间类分离的解析延续得出的结果完全一致。我们演示了如何使用这个密度矩阵来限制时空相关函数,并表明我们的界限比其他方法更紧并且遵循 Lieb-Robinson 界限。此外,我们在量子计算机上测试了这个时空密度矩阵对单量子比特系统的预测。使用我们的方法计算的时空纠缠构成了热化的新探针,并且可以为选择用于量子多体系统时间演化的有效张量网络假设提供启示。使用合成细胞建立病毒宿主相互作用的最小模型 Layla Adeli 导师:Richard Murray 和 Zach Martinez 利用最小模型研究合成细胞病毒感染的潜力使其成为研究尚未得到充分研究的病原体的首选。为了设计 PhiX174 噬菌体的合成宿主,我们尝试将 PhiX174 识别的脂多糖 (LPS) 整合到脂质体膜中,以潜在地封装无细胞转录、翻译和复制系统 (PURE Rep)。此外,设计为在脂质体内由 PhiX174 基因触发时发出荧光的立足点开关可以检测 PhiX174 基因组的 DNA 转录——我们目前的工作包括设计一种具有高效性的开关。我们已经成功生产出脂质体,并正在努力整合检测机制我们在量子计算机上测试该时空密度矩阵对单量子比特系统的预测。使用我们的方法计算的时空纠缠构成了一种新的热化探测,可以为选择一种有效的张量网络假设来研究量子多体系统的时间演化。使用合成细胞建立病毒宿主相互作用的最小模型 Layla Adeli 导师:Richard Murray 和 Zach Martinez 利用最小模型研究合成细胞病毒感染的潜力使合成细胞成为研究尚未得到充分研究的病原体的首选。为了设计 PhiX174 噬菌体的合成宿主,我们尝试将 PhiX174 识别的脂多糖 (LPS) 整合到脂质体膜中,以潜在地封装无细胞的转录、翻译和复制系统 (PURE Rep)。此外,当脂质体中的 PhiX174 基因触发时,设计为发出荧光的立足点开关可以检测 PhiX174 基因组的 DNA 转录——我们的工作目前包括设计一种具有高效性的立足点开关。我们已经成功生产出脂质体,并正在努力整合检测机制我们在量子计算机上测试该时空密度矩阵对单量子比特系统的预测。使用我们的方法计算的时空纠缠构成了一种新的热化探测,可以为选择一种有效的张量网络假设来研究量子多体系统的时间演化。使用合成细胞建立病毒宿主相互作用的最小模型 Layla Adeli 导师:Richard Murray 和 Zach Martinez 利用最小模型研究合成细胞病毒感染的潜力使合成细胞成为研究尚未得到充分研究的病原体的首选。为了设计 PhiX174 噬菌体的合成宿主,我们尝试将 PhiX174 识别的脂多糖 (LPS) 整合到脂质体膜中,以潜在地封装无细胞的转录、翻译和复制系统 (PURE Rep)。此外,当脂质体中的 PhiX174 基因触发时,设计为发出荧光的立足点开关可以检测 PhiX174 基因组的 DNA 转录——我们的工作目前包括设计一种具有高效性的立足点开关。我们已经成功生产出脂质体,并正在努力整合检测机制
由约翰·巴尔丁(John Bardeen),莱昂·库珀(Leon Cooper)和罗伯特·施里弗(Robert Schrieffer)开发的BCS理论成功地建模了I型超导体的性能。该理论的一个关键方面是通过与晶格的相互作用而形成了库珀对,这是由于与晶格振动相关的电子之间的轻微吸引力所致。这些配对的电子的行为更像是玻色子,凝结成相同的能级,并在带隙以下的温度上表现出零电阻率。获得诺贝尔奖的三人组的工作表明,超导性的临界温度取决于带隙和同位素质量,指向声子相互作用机制。给定的文章文本此处已将半导体的属性扩展到包括环境样本[11,12]。半导体表现出具有能隙(例如)为特征的带状结构,硅的EG约为1.17 eV,而EG的EG约为0.66 eV。内在的半导体,例如纯硅或锗,由于热能而导致一些电子升高到传导带。填充特定能量状态的概率遵循费米 - 迪拉克分布。在室温下,化学势(μ)和费米能(EF)大致相等。传导电子可以通过相对于费米能的能量水平来识别它们。当电子被激发到传统带中时,它留下了一个孔,该孔充当价带中的正电荷载体。杂质半导体是通过引入杂质(掺杂)来改变其电子特性而创建的。n型材料的杂质比半导体的价电子多,而P型材料的杂质具有较少的价电子。在超导性中,可以在液态氦低温器中观察到几种现象。通过测量磁场排除(Meissner效应)证明了向超导状态的过渡,因为温度通过沸腾的氦气流降低。还观察到,还观察到还观察到通过两个超导体之间的绝缘连接在超导铅缸中诱导电流的持续性。此实验的准备问题包括测量0.5英寸汞的高度,以允许蒸发氦气逃脱,防止空气逆流进入脖子,并取下插头以测量氦气水平并插入实验。应通过各种方法将这种开放条件的持续时间最小化,例如减少电线表面上的杂质或平行于其平行的磁场。这可以帮助减轻非常规超导体和其他可能导致库珀对破裂的来源的疾病的影响。超导和扩散金属状态之间产生的相变是一种复杂的现象,受到电流和热激活相滑的波动的影响。已经对此过程进行了全面分析,从而揭示了从量子临界到低温金属相过渡时,零频率电运中的非单调温度依赖性。遵循De Gennes的方法,参考。接近临界点,热电导率比显示了遵守Wiedemann-Franz定律的线性温度依赖性。在相关研究中,对强烈相互作用的国家方程的调查已经持续了近二十年。这项研究通过检查了描述核液体 - 液体相变和解糊精过渡的准确解决的统计模型,从而为这一领域做出了贡献。通过扩展热力学限制中的溶液到有限体积,研究人员直接从大规范分区中制定了相似的相类似物。已经探索了对这些系统的表面影响,表明表面的存在可以显着影响相行为,尤其是对于强烈相互作用的物质。时间限制对金属超导性和超流量的影响,电子在短范围内使用筛选的库仑电位相互作用。金属的现象学理论(称为Landau Fermi液体理论)假设这些相互作用的电子绝热连接到自由电子。这使我们能够将金属中的电子视为具有重归于参数的非相互作用的费米。有限温度下金属的比热与激发的数量成正比,即大约4kf/k,其中kf是费米波形,而ek是电子的能量。这表明金属中的电子出于实际目的的行为就像非交互式费米子。一项研究发现,声子的线宽与电子偶联参数λ成正比。然而,一些研究的重点是超导体中的电子声子相互作用,尤其是在常规和非常规的超导体中。这项研究的目的是更好地了解使用非弹性中子散射的经典超导体的声子频谱。另一项研究试图以“纯粹的经典”方式解释Meissner效应,即从超导体中驱动磁场线。但是,该论点滥用了Gennes的通量驱动,并受到其他研究人员的争议。我们不是直接解决最关键的论点,而是基于De Gennes的古典教科书摘录的基本观点[2]。1将超电流密度描述为j(r)= n(r)e*v(r),其中n是超导电子的密度,v是载体的漂移速度。通过将该方程取代到表达式中以进行动能并最大程度地减少动能和磁能的总和,可以到达F.和H. Londons的方程式:H +λ2∇×(∇×H)= 0,其中λ是穿透深度。此方程式解释了字段排斥。值得注意的是,该方程的推导不依赖于量子概念或普朗克常数。状态揭示了2DEG的特性;具体而言,它表现出半耗油的石墨烯EF自旋偏振法表面。这导致了有趣的现象,例如与旋转密度相关的电荷电流和与电荷密度相关的旋转电流。此外,Berry的阶段具有强大的疾病,显示出弱反定位但不可能的定位。当对称性打破时,表面能隙会打开,导致诸如量子霍尔状态,拓扑磁电效应或超导状态等外来状态。但是,如果表面保持不足而没有破坏对称性,甚至出现了更异常的状态,则需要固有的拓扑顺序,例如非亚伯式FQHE或表面量子厅效应。文本进一步探索了轨道QHE,e = 0 landau级别的dirac费米子和“分数” iqhe 2/3 e/h B.异常的QHE可以通过沉积磁性材料来诱导表面间隙,从而导致质量M↑M↓。在拓扑绝缘子(TIS)的背景下,文本讨论了磁电效应Qi,Hughes,Zhang '08;艾森,摩尔,范德比尔特'09。它考虑了带有磁体间隙表面的Ti的实心圆柱体,并探索了拓扑“ Q术语” 2 DL EB E E1 ME N E2 H2 H2 Q H Tr Sym。
物理定律被蚀刻到对称的画布上,定义了动态系统中的不变模式。但是,当对称性破碎时,基本定律也是如此,通常会导致戏剧性的转变。大爆炸是一个很好的例子,在该例子中,高度对称的状态被称为“假真空”,突然过渡到了一个较低的对称性之一,释放了一种通货膨胀的级联,该级联伴随着我们的宇宙。在早期的宇宙中,极端的热量和能量导致所有力融合到一个实体中 - 由最高对称性的统一拉格朗日描述,但理论上的物理学家完全掌握了。随着宇宙的扩展和冷却,这种对称性被打破,将统一的力分成两个不同的组(重力和电核)。随后的冷却导致对称性进一步崩溃,随着电核力量分为强大的核力量和电能力量,标准模型的Lagrangian失去了更多的对称性。最终,在大爆炸之后的一秒钟仅一秒钟,宇宙就足够冷却了,以使统一的电子周力粉碎到电磁力和弱核力量中。在每个阶段,都会发生自发对称性破裂,从而导致物理不变,并出现新的行为。物理学家长期以来一直研究了自发对称性破坏的现象,范围从结晶和相变到诸如Yoichiro Nambu提出的下原子模型等例子,他们在2008年获得了这一概念的诺贝尔物理学奖。新的平衡位置随着箍旋转的速度而出现。结晶发生时,当温度降低时,具有高平均局部对称性的分子的流体会突然过渡,从而在相对位置施加了较低对称的限制并导致有序的晶体结构。即使是固体晶体也可以经历相变,因为一个对称性比另一种对称性在能量上更有利,从而导致其结构变化。在力学中,用参数缓慢进化的潜在函数可以从一个对称开始,并过渡到另一个较低的对称性,可能导致由该功能控制的机械系统的行为不连续变化。在复杂的系统和混乱理论中,当某些参数不断变化时,行为突然的转移很常见,导致分叉 - 对控制参数的持续变化而发生的突然变化。分叉以各种形式出现,每个形式都带有描述性名称,例如干草叉,倍增,霍普夫和折叠分叉。干草叉分叉是一个模范的情况,随着参数的连续变化(水平轴),稳定的固定点变得不稳定,从而产生了两个新的稳定固定点,同时 - 类似于三个衬托的干草叉的形状(超级挑剔的干草店双面双面双面双面双面布置)。可以在简单的机械模型中观察到这种确切的现象,这些模型说明了...当稳定的固定点突然分成多个固定点,一个不稳定,而其他稳定的稳定点时,就会发生对称性破裂。一个简单的机械模型显示此现象是在旋转圆圈上滑动的珠子。该概念也与Coleman-Weinberg的潜力有关。当箍缓慢旋转时,珠子在其底部的平衡周围振荡;但是,随着离心力更快,它会导致珠子摆动到一侧或另一侧,从而产生两个新的稳定固定点。当自旋速率超过临界阈值时,会发生过渡,从而导致自发对称性断裂和干草叉分叉。通过整合角加速度,我们可以获得系统的有效潜力,该系统自然会随着自旋速率的增加而表现出干草叉分叉。当干草叉的底部处于平衡状态时,振荡的固有频率基本平坦,频率为零。以下一定的过渡阈值,扩展加速度表达式揭示了固有频率。随着有效电势会变得更平整,自然振荡频率会降低,直到其在过渡自旋频率下消失为止。要找到这些新频率,请在新的平衡点附近扩展θ,这是一个谐波振荡器,具有角度频率,可以上升以匹配箍的自旋速率。这个过程与经历相变的铁电晶体中的自发对称性破裂相似。自发对称性破坏是一个过程,其中对称态的系统自发过渡到不对称状态。可以在运动方程或拉格朗日表现出对称性的系统中观察到这种现象,但是最低的能量真空溶液没有。当系统塌陷成这些真空溶液之一时,即使整个拉格朗日保留了对称性,对称性也会破坏该真空周围的扰动。自发对称性破坏需要在对称转换(例如翻译或旋转)下保持不变的物理定律。例如,如果在两个不同位置处的测量值具有相同的概率分布,则可观察到的可观察到的转换对称性。在自发的对称性破坏中,这种关系被破坏了,而潜在的物理定律保持对称。相反,当考虑具有不同概率分布的结果时,就会发生显式对称性破坏。缺乏旋转对称性的电场的引入明确打破了旋转对称性。的阶段,例如晶体和磁铁,可以通过自发对称性破坏来描述,但值得注意的例外包括拓扑阶段,例如分数量子霍尔效应。通常,当自发对称性破裂发生时,多个可观察的特性会同时改变。例如,当液体变为固体时,密度,可压缩性,热膨胀系数和比热可能会发生变化。考虑一个向上的圆顶,底部有一个槽。如果将球放在峰值上,则系统在其中心轴旋转下是对称的。但是,球可以通过滚入槽(最低能量点)来自发打破这种对称性。圆顶和球保留了他们的对称性,但是系统不再具有对称性。在理想化的相对论模型中,可以通过说明性标量场理论总结自发对称性破坏。相关的Lagrangian分为动力学和潜在术语:l = ∂μx∂μϕ -V(ϕ)。在这个潜在的术语中,对称性破裂发生。由Jeffrey Goldstone引起的潜力的一个示例由V(ϕ)= -5 | ϕ |^2 + | ϕ |^4给出。对于0和2π之间的任何真实θ,该电位具有由ϕ =√(5/2)E^(iθ)给出的无限数量的最小值(真空状态)。该系统还具有与φ= 0相对应的不稳定真空状态,该状态具有u(1)对称性。系统落入特定的稳定真空状态(构成θ的选择)后,该对称性似乎会丢失或“自发损坏”。该理论的基态打破了对称性,表明无质量的Nambu -Goldstone玻色子,代表了Lagrangian中原始对称性的记忆。[6] [7]对于铁磁材料,空间旋转是不变的。在居里温度下方,磁化点朝着一定方向,使残留的旋转对称性不间断。描述固体的定律在欧几里得组下是不变的,但由于位移和方向顺序参数,自发分解为空间组。一般相对论的洛伦兹对称性被FRW宇宙学模型中的平均4速度场打破了,类似于宇宙微波背景。电动模型在其温度下经历了相变,在该温度下,希格斯字段充当阶参数破坏量规对称性。超导体的集体场ψ可以打破电磁量规对称性。最初在旋转下最初对称的薄塑料杆在屈曲后变为不对称,但通过其旋转模式保留了圆柱对称性的特征,代表Nambu -Goldstone Boson。(1967)。无限平面上的均匀流体层的对称性是由于温度梯度而形成的对流。旋转圆形箍上的珠子最初将保持静止,但是随着旋转速度的增加,它将开始沿特定方向移动,说明了各种物理系统中对称性的自发破坏。在旋转箍的底部,有一个平衡点,重力电势是稳定的。随着箍旋转的速度,这一点变得不稳定,珠子跳到了中心两侧的两个新均衡之一。最初,系统是对称的,但是在传递临界速度之后,珠子沉降到这些新点之一,打破了对称性。两个气球实验表明,当两个气球最初均等地膨胀时,自发对称性破裂,然后随着空气从一个流向另一个气流而放气。在粒子物理学中,量规对称性预测,某些测量值在田间的任何位置都相同。例如,方程可能预测相等的夸克质量。但是,求解这些方程可以产生不同的解决方案,反映出对称性的崩溃。这种现象称为自发对称性破坏(SSB)。早期宇宙的不同区域的对称性可能有所不同,导致拓扑缺陷如域壁和宇宙弦。自发对称性破坏可以通过产生不必要的单脚架来为大统一理论(肠道)带来挑战。手性对称性破坏是SSB影响粒子物理中强相互作用的一个例子。量子染色体动力学的这种特性解释了核子和常见物质中的大部分质量,将光夸克转化为较重的成分。在此过程中,亲尼是近似的Nambu-Goldstone玻色子,其质量比核子的质量轻得多。手性对称性破裂是希格斯机构的原型,这是电动对称性破坏的基础。希格斯机制和自发对称性断裂是错综复杂的,特别是在仪表对称的领域,这实际上代表了描述对称性的冗余。这个概念在理解金属的超导性和粒子物理标准模型中粒子的起源方面起着至关重要的作用。然而,必须注意,由于Elitzur的定理指出,“自发对称性破坏”一词在某种程度上具有误导性。相反,在应用量规固定后,可以以类似于自发对称性破坏的方式破坏全局对称性。区分真实对称性和规格对称性的一个重要结果是,由于量规对称性的自发断裂对量规矢量场的描述,导致无质量的NAMBU-GOLDSTONE玻色子吸收。此过程提供了巨大的矢量场模式,类似于超导体中或在粒子物理学中观察到的媒介模式。在粒子物理的标准模型中,SU(2)×u(1)与电脉力相关的su(2)×u(1)仪表对称性的自发对称性破坏会为各种粒子产生质量,并区分电磁和弱力和弱力。W和Z玻色子是介导弱相互作用的基本颗粒,而光子介导电磁相互作用。在100 GEV以上的能量下,所有这些颗粒的行为都类似。然而,根据温伯格 - 萨拉姆理论,在较低的能量下,这种对称性被损坏,因此光子和巨大的W和z玻璃体出现。此外,费米子始终如一地发展质量。没有自发的对称性破坏,基本粒子相互作用的标准模型必须存在几个颗粒,但是某些粒子(W和Z玻璃体)然后将被预测是无质量的,与观察到的质量相矛盾。为解决这一点,希格斯机制增强了自发对称性破裂,以使这些颗粒质量质量。这也表明存在一个新粒子Higgs Boson,该粒子在2012年被检测到。金属中的超导性用作Higgs现象的凝结物类似物,其中一组电子对电子对自发打破了与光和电磁相关的U(1)量规对称性。动态对称性破坏(DSB)代表一种自发对称性破坏的一种特殊形式,与其理论描述相比,系统的基态具有降低对称性的特性。全局对称性的动态破坏是由于量子校正而不是在经典树级别而发生的一种自发对称性破坏。然而,动态规格对称性破裂更为复杂,不涉及不稳定的希格斯粒子,而是涉及系统的结合状态,提供了促进相变的不稳定场。物理学家Hill和Lindner发表了研究,该研究通过使用由顶式夸克制成的复合粒子探索了标准希格斯机制的替代方法。这个概念是复合HigGS模型的一部分,其中复合粒子充当希格斯玻色子。动态破裂通常与诸如夸克冷凝物等费米子冷凝物有关,而在超导性中,声子促进了对成对结合的电子,从而导致电磁仪表对称性破坏。大多数阶段可以通过自发的对称性破裂来解释,就像在所有翻译或磁体下都不是在特定方向方向取向的磁体的晶体。其他示例包括列液晶和拓扑排序的状态,例如分数量子厅液体。但是,也已知无法通过自发对称性破裂描述的系统,包括拓扑秩和自旋液体。这些状态保留了初始对称性,但具有不同的特征。铁磁性是自发对称性断裂的主要例子,在一定温度下,能量在磁化倒置下保持不变,但随着外部磁场接近零,能量会破裂。自发对称性阶段的特征是阶参数描述了打破所考虑的对称性的数量。这种崩溃不可避免地伴随着与阶参数的缓慢,长波长波动相关的无间隙nambu-goldstone模式,例如晶体中的声子或磁体中的自旋波。在一维系统中,发生对称性破坏。根据Mermin和Wagner的定理的说法,这些无质量的金石模式在恒定的速度下传播,并在有限温度下被热波动破坏。量子波动防止在零温度下的一维系统中大多数类型的连续对称性破裂,除了其顺序参数保守且没有量子波动的铁磁体。其他远程相互作用系统可能会破坏翻译和旋转对称性。对称的哈密顿量导致无限体积极限的手性构型破坏了镜面对称性。自发对称性破坏需要一个具有多种可能结果的系统,在采样时,它们是整体对称的,但在整体上是对称的,但在采样时会产生特定的不对称状态。这种“隐藏的对称性”具有至关重要的形式后果,并且与金石玻色子有关。在具有对称对称组的理论中,当组的一个元素不同而没有指定哪个成员时,就会发生自发对称性破裂。顺序参数概念是物理理论中的关键,其中对称性下的期望值不变表示有序的相位和断裂的对称性。除非涉及希格斯机制,否则这可能会导致无质量的金石玻色子。在1964年,物理学家Yoichiro Nambu和Makoto Kobayashi因其在亚原子物理学和对称性破坏方面的工作而获得了诺贝尔物理奖的一半。他们的发现揭示了强烈的相互作用如何打破对称结构,从而导致粒子(例如夸克和胶子)的产生。研究论文,例如Chen等。(2010)和Kohlstedt等。(2010)和Kohlstedt等。奖项的另一半因发现CP(指控和平等)对称性在薄弱的互动中被授予Toshihide Maskawa。这一发现对我们对粒子物理学的理解有影响,尤其是与希格斯机制有关。对称性破裂是物理学中的一个基本概念,描述了某些对称性如何在不同的物理系统中丢失或扭曲。它已经在各个领域进行了广泛的研究,包括量子力学,冷凝物质物理学和宇宙学。研究人员探索了对称性破坏了各种机制,例如自催化反应,灾难理论,手性对称性破坏和HIGGS机制。这些理论旨在解释对称性如何在不同的情况下破裂或扭曲,从而阐明了自然的基本定律。近年来,研究人员继续探索对称破坏的概念,并研究了诸如大统一理论,量规重力理论和宇宙弦之类的主题。对对称性破裂的研究仍然是研究的活跃领域,其驱动到其潜力揭示了对宇宙基础结构的新见解的潜力。在包括物理学在内的各个科学社区中,已经对自发对称性破坏的概念进行了广泛的研究。(2007)分别探讨了其对量子纠缠和手性的影响。诺贝尔物理学奖2008颁发给对该领域做出重大贡献的研究人员。史蒂文·温伯格(Steven Weinberg)等学者在诸如Cern Courier等出版物中的意义反映了其重要性。Englert-Brout-Higgs-Guralnik-Hagen-Kibble机制是自发对称性破坏的基本概念,该概念是Guralnik等人最初引入的。该理论已被广泛应用于量规理论,并且是众多研究的主题,包括在《国际现代物理学杂志》中发表的A.自发对称性破坏对我们对宇宙的理解具有深远的影响,其研究仍然是一个积极的研究领域。
