本补充文件对上述招股说明书进行了更新,其中包含以下信息。应完整阅读本补充文件,并将其与您的招股说明书一起保存,以供将来参考。E D & F Man Capital Markets, Inc. 的名称变更。自 2022 年 12 月 1 日起,Teucrium 玉米基金、Teucrium 糖基金、Teucrium 大豆基金和 Teucrium 小麦基金的清算经纪商之一 E D & F Man Capital Markets, Inc.(请参阅各基金招股说明书中的“基金服务提供商 - 清算经纪商”)已更名为“Marex Capital Markets Inc.”。适用基金招股说明书中所有对“E D & F Man Capital Markets, Inc.”的引用均更改为“Marex Capital Markets, Inc.”法律事务。以下信息已添加到各招股说明书中标题为“法律事务”下的“诉讼和索赔”部分。
摘要 对于密钥的生成,几乎没有开发出集成状态和比特的量子算法。对于组合器组件来说,集成随机状态和比特是困难的。这项研究的根本问题是量子电路的设计、算法、状态极化设置以及比特和状态的串联。通过将直线、正交(叠加)或两种状态与比特相结合,我们研究了量子混合协议的三种不同可能性。我们研究了每种情况下的误差,并通过考虑状态在不受信任的信道上传输时的有效性,将它们与退相干和其他量子力学特性进行了比较。此外,我们观察到,在将我们的结果与早期提出的量子协议进行比较时,密钥大小、状态错误、设计复杂性和安全性都得到了合理的解决,以便确定解决方案。因此,建议的密钥协议的有效性高于早期提出的协议。
摘要:背景:比特币采矿是一种能源密集型过程,需要大量的电力,这导致采矿作业的碳足迹特别高。在哈萨克斯坦共和国,那里是由燃煤电厂产生的大部分电力,采矿作业的碳足迹特别高。本文通过采矿农场来研究能源消耗的规模,评估其在该国的总电费中的份额,并分析与比特币采矿相关的碳足迹。与其他经济领域的比较分析,包括运输和行业,以及减少采矿业务的环境影响的可能措施。材料和方法:使用哈萨克斯坦国家统计局(Bureau of Hazakhstan)提供的材料和方法:用于评估哈萨克斯坦碳足迹的影响,从2016年到2023年,使用了哈萨克斯坦共和国国家统计局。还分析了各种发电厂的电力生产数据。生命周期评估(LCA)方法用于分析能量系统的环境性能。CO 2排放。结果:哈萨克斯坦的总电量从2016年的74,502 gwh增加到2023年的115,067.6 gwh。在此期间,工业部门的电力消耗保持相对稳定。矿业农场的消费量在2021年为10,346 gwh。对CO 2排放的比较分析表明,与可再生能源的发电以及炼油和炼油和汽车制造相比,比特币采矿具有更高的碳足迹。结论:由于大量消耗和导致的二氧化碳排放,比特币采矿对哈萨克斯坦共和国的环境产生了重大负面影响。需要采取措施来过渡到可持续的能源并提高能源效率,以减少加密货币采矿活动的环境足迹。
摘要 — 在量子计算中,使用高保真度纠缠量子比特对在两个系统之间进行通信至关重要。为了提高两个纠缠量子比特之间的保真度,人们使用一种称为蒸馏的技术。蒸馏协议有很多种。1995 年,Bennet 等人发表了一篇论文 [1],其中介绍了一种名为 BBPSSW 的协议。1996 年,Deutsch 等人发表了一篇新论文,进一步改进了该协议,其中介绍了一种名为 DEJMPS 的新协议。最后,在 2008 年,Campbell 和 Benjamin 发表了一篇论文,介绍了一种使用光子损耗蒸馏纠缠量子比特对的最终新方法。为了将每个协议与另一个协议进行比较,我们将对每个协议进行解释。然后,将从四个不同的点对这三个协议进行比较。这些是输入灵活性 1 、成功蒸馏的概率、每次迭代的保真度改进和效率 2 。经过比较可以得出结论:DEJMPS 是总体最佳的协议,因为它在上述四点中总体排名最高。
机器学习作为量子比特可扩展性的推动者 人们正在努力生产集成技术上相关数量的量子比特的电路。 虽然大多数材料系统中的量子比特控制现已成熟,但设备变异性是量子比特可扩展性的主要瓶颈之一。 我们如何表征和调整数百万个量子比特? 机器学习可能可以给出答案。 不久前,编码和控制单个量子比特所需的掌握还只属于少数专家。 他们为自己的精湛技艺感到自豪。 攻读博士学位的学生或以《自然》杂志上的一封信为目标的早期职业研究人员愿意坚持不懈,直到他们获得实验所需的一个可运行的设备。 要作为量子比特运行,量子设备必须首先进行调整,研究人员必须找到一组可以编码量子比特并优化其性能的参数。 但是这种单一设备的方法不适用于工业量子技术。
尽管超导量子比特为可扩展的量子计算架构提供了潜力,但执行实用算法所需的高保真度读出迄今为止仍未实现。此外,高保真度的实现伴随着较长的测量时间或量子态的破坏。在本论文中,我们通过将两个超低噪声超导放大器集成到单独的色散通量量子比特测量中来解决这些问题。我们首先演示了一个通量量子比特,该量子比特与由电容分流 DC SQUID 形成的 1.294 GHz 非线性振荡器电感耦合。振荡器的频率由量子比特的状态调制,并通过微波反射法检测。微带 SQUID(超导量子干涉装置)放大器 (MSA) 用于提高测量灵敏度,使其高于半导体放大器。在第二个实验中,我们报告了通过共享电感耦合到由交错电容器和蛇形线电感器并联组合形成的准集总元件 5.78 GHz 读出谐振器的通量量子比特的测量结果。近量子极限约瑟夫森参量放大器 (paramp) 可大幅降低系统噪声。我们展示了使用 MSA 在读出谐振器中低至百分之一光子的读出激发水平下提高保真度和降低测量反作用的测量结果,观察到读出可见度提高了 4.5 倍。此外,在读出谐振器中低于十分之一光子的低读出激发水平下,未观察到 T 1 的降低,这可能使连续监测量子比特状态成为可能。使用 paramp,我们展示了具有足够带宽和信噪比的连续高保真读出,以解决通量量子比特中的量子跳跃。这是通过读出实现的,该读出可将读出指针状态分布的误差区分为千分之一以下。再加上能够在 T 1 时间内进行多次连续读出,允许使用预兆来确保初始化到可信状态(例如基态)。这种方法使我们能够消除由于虚假热布居引起的误差,将保真度提高到 93.9%。最后,我们使用预兆引入一个简单、快速的量子比特重置协议,而无需更改系统参数来诱导 Purcell 弛豫。
量子计算霸权论证描述了量子计算机执行传统计算机无法完成的任务的方式,通常需要某种与传统计算的局限性相关的计算假设。一个常见的假设是多项式层次结构(PH)不会崩溃,这是 P ̸ = NP 命题的更强版本,这导致的结论是,对某些量子电路系列的任何经典模拟所需的时间缩放都比电路大小的任何多项式更差。然而,这个结论的渐近性质使我们无法计算这些量子电路必须具有多少个量子比特,才能使它们的经典模拟在现代经典超级计算机上无法解决。我们改进这些量子计算霸权论证,并通过施加非崩溃猜想的细粒度版本来执行此类计算。我们的前两个猜想 poly3-NSETH( a ) 和 per-int-NSETH( b ) 采用了特定的经典计数问题,这些问题与 F2 上的 n 元 3 次多项式的零点数量或 n × n 整数值矩阵的永久项有关,并断言解决这些问题的任何非确定性算法都需要 2cn 个时间步长,其中 c ∈{a,b}。第三个猜想 poly3-ave-SBSETH( a ′ ) 断言了类似的命题,即平均情况算法存在于复杂度类 SBP 的指数时间版本中。我们分析了这些猜想的证据,并论证了当 a = 1/2、b = 0.999 和 a ′ = 1/2 时它们是合理的。
量子计算霸权论证描述了量子计算机执行传统计算机无法完成的任务的方式,通常需要某种与传统计算的局限性相关的计算假设。一个常见的假设是多项式层次结构(PH)不会崩溃,这是 P ̸ = NP 命题的更强版本,这导致的结论是,对某些量子电路系列的任何经典模拟所需的时间缩放都比电路大小的任何多项式更差。然而,这个结论的渐近性质使我们无法计算这些量子电路必须具有多少个量子比特,才能使它们的经典模拟在现代经典超级计算机上无法解决。我们改进这些量子计算霸权论证,并通过施加非崩溃猜想的细粒度版本来执行此类计算。我们的前两个猜想 poly3-NSETH( a ) 和 per-int-NSETH( b ) 采用了特定的经典计数问题,这些问题与 F2 上的 n 元 3 次多项式的零点数量或 n × n 整数值矩阵的永久项有关,并断言解决这些问题的任何非确定性算法都需要 2cn 个时间步长,其中 c ∈{a,b}。第三个猜想 poly3-ave-SBSETH( a ′ ) 断言了类似的命题,即平均情况算法存在于复杂度类 SBP 的指数时间版本中。我们分析了这些猜想的证据,并论证了当 a = 1/2、b = 0.999 和 a ′ = 1/2 时它们是合理的。
量子计算机 (QC) 背后的理论最早是在 40 年前提出的。该领域的研究取得了杰出的成果,有可能破坏当今使用的最流行的加密协议。一个值得注意的理论结果是 Peter Shor 的量子算法 [25],它可用于破解 RSA 或 ECDSA 等数字签名方案。物理实现这种复杂机器所需的工程进步最近才开始出现,但扩展方法的突然改进可能会导致强大的 QC 几乎在一夜之间出现。比特币社区也受到这些发展的影响,因为确保资金所有权的机制依赖于 ECDSA。比特币的加密技术必须更新;事实上,如果人们愿意牺牲速度和存储空间,有很多后量子加密方案可供选择。这种方案将在某个时候在比特币中实现,大多数用户将能够使用抗量子签名安全地锁定他们的资金。然而,在量子计算机突然出现这种极端情况下,并非所有用户都能从这次升级中受益。有趣的是,比特币中推荐的做法将提供一定程度的量子抵抗力,允许安全地收回资金,但不幸的是,许多用户并没有遵循这些做法。在本文中,我们分析了比特币 (BTC) 和比特币现金 (BCH) 的资金量,这些资金量由暴露的公钥保护;或者,从量子的角度来看
近十年来,许多国家都在积极研究超导量子电路的基本量子特性 [1–3]。该领域的进展得益于新型量子比特的出现 [4, 5]、制造方法的改进 [6– 10]、系统尺寸的增加 [2–11] 以及量子比特的相干性 [2, 12]。超导量子比特的主要优势是制造工艺相对简单,采用半导体电子产品生产中广泛使用的标准电子束沉积和纳米光刻方法。超导量子比特的运行基于约瑟夫森效应。[12, 13] 的作者简要介绍了超导量子比特的主要类型,特别是相干时间达到数十和数百微秒的 transmons 和 fluxoniums。