摘要。现代神经界面的市场尽管不幸的是,尽管它的积极发展,但可以为用户提供许多现有的原型,这些原型具有相对较低的人类操作员控制效果的准确性和识别可靠性。此外,市场上的任何神经界面都必须分别针对每个操作员量身定制,这使得很难使其准确性,精度和可靠性客观化。解决上述问题的第一步是对本文介绍的现有神经接口技术市场的不同价格段进行比较分析。市场研究表明,尽管脑电图的缺点,但它是在神经界面系统中记录生物学信号的最易接收的非侵入性方法之一。为了促进未来的研究,已经考虑并分析了神经界面中已知模型和信号分析方法的主要优势和缺点。尤其是在信号预处理,诸如共同平均参考,独立组件分析,常见空间模式,表面拉普拉斯,常见的空间空间模式和自适应滤波等方法的信号预处理,优势和缺点的情况下。在评估信号的信息特征,模型和方法的分析基于自动锻炼的自适应参数,双线性自动化,多维自动进程,快速傅立叶变换,小波转换,波包分解的模型。此外,对人类神经界面操作员的控制效应的最常见鉴定方法(识别)的比较分析,即,判别分析的方法,参考矢量的方法,非线性贝叶斯分类器,邻居的分类器,人造神经网络的分类器。神经界面技术的研究为研究人员提供了更多的基础,以选择神经接口系统的数学,软件和硬件,并为新版本的开发提供了提高的准确性,可靠性和可靠性。
出版商的陈述,这是作者的作品版本,该作品被接受以供可再生能源出版。由出版过程产生的变化,例如同行评审,编辑,校正,结构格式和其他质量控制机制,可能不会反映在本文档中。自从提交出版以来,可能已经对这项工作进行了更改。随后发表了一个确定的版本,以可再生能源(157,(2020))https://doi.org/10.1016/j.renene.2020.05.024
重大抑郁症(MDD)的特征是情绪持续持续的较差,利息降低和能量缺乏,患病率很高,复发和残疾率。这是全世界残疾的主要原因(1)。抑郁症在任何年龄都可以发生;但是,在青春期的风险特别高(2)。青少年抑郁症会导致学习成绩下降,社会功能受损,自杀风险增加,药物滥用和成年后的抑郁症复发(2)。目前,具有MDD的青少年会遇到诸如低诊断率和药物治疗结果不佳的挑战(3,4)。青春期抑郁症通常被忽略,这可能与烦躁混淆。此外,它可能表现为无法解释的身体症状,饮食失调,焦虑,行为问题,逃学,学术衰落和滥用药物,进一步使诊断更加复杂(5)。至于治疗,传统的单胺靶向抗抑郁药的发作缓慢(大约2至4周),临床治愈率低,显着残留症状以及复发和功能障碍的风险更高(6)。了解青少年抑郁症的潜在机制对于开发新颖的诊断方法和改善治疗策略以减轻其不良反应至关重要。炎性细胞因子是一类可溶性蛋白,可调节免疫反应,细胞增殖和组织修复(7)。它们在结构和功能上进一步分类为白介素,干扰素,肿瘤坏死因子超家族成员,刺激因子,趋化因子和生长因子。基于它们的作用,细胞因子被分类为促进性,包括白介素-1(IL-1),肿瘤坏死因子因子-Alpha(TNF- A),IL-6和IL-6和IL-12和IL-12和IL-12和抗炎性,包括IL-4,IL-4,IL-4,IL-4,IL-4,IL-10和IL-13。炎症细胞因子的失调与多种疾病有关,包括严重感染
异常定位,目的是将图像中的异常区域分割出来,这是由于种类繁多的异常类型而具有挑战性的。现有方法通常是通过将整个图像作为整体而却很少付出的努力来学习局部分布来训练深层模型,这对于这项Pixel Prescerise任务至关重要。在这项工作中,我们提出了一种基于补丁的方法,可以适当考虑全球和本地信息。更具体地说,我们采用本地网络和全球网络分别从任何单个贴片及其周围来提取特征。全球网络经过训练,其目的是模仿本地功能,以便我们可以从上下文中轻松检测其功能不匹配时。我们进一步引入了不一致的异常检测(IAD)头和一个失真异常检测(DAD)头,以足够的时间发现全球和局部特征之间的差异。源自多头设计的评分函数有助于高精度异常定位。在几个现实世界数据集上进行了广泛的实验表明,我们的方法优于最大的竞争对手,而竞争对手的差距足够大。
摘要 — 室内定位和情境感知正成为各种应用的两项关键技术。最近,通过采用超宽带 (UWB) 技术,人们已经实现了厘米级精度和低功耗的实时定位系统。自 2015 年以来,Decawave 已生产出商用 UWB 集成电路,利用飞行时间测量技术来估计两个代理之间的距离。这项工作介绍了两台 Decawave 收发器(DW1000 和 2020 年发布的新款 DW3000)之间的性能研究。测试空间包括视距内区域和由 UWB 无线电信号反射到各种障碍物而引起的各种非视距条件。最后,我们分析了不同配置下的功耗,并对两台设备进行了比较。结果表明,两者在 1 米以上的测量范围内具有相似的精度,而考虑到较短的距离,DW3000 的平均性能要好 33.2%。此外,新收发器在实时测量过程中的功耗降低了近 50%,平均值达到 55 mW。索引术语 — 超宽带技术、超宽带通信、物联网、室内定位、功耗
本研究旨在对比研究不同用途鞋面革的粒面特性。因此,三家不同的鞋业公司提供了六种不同类型的鞋面革(裂纹革、仿古革、漆皮、纳帕革、磨砂革、印花革)。对厚度相似的皮革进行拉伸强度和断裂伸长率(TS EN ISO 3376)、单边和双边撕裂强度(TS EN ISO 3377-1、TS EN ISO 3377-2)、抗裂和抗破裂性(TS 4137 EN ISO 3378、TS EN ISO 3379)、抗屈挠性(TS EN ISO 5402-1)以及干湿摩擦牢度试验(TS EN ISO 11640)。研究结果提供了有关不同鞋面革类型的物理强度和产品性能的信息。对数据进行了比较评估,并评估了鞋面革类型对质量和性能的影响。
抵抗[5]。尽管过程优化了重大的优化工作,但由PBF-LB和PBF-EB生产的316升零件仍然无法满足最佳功能性能所需的表面质量要求。据报道,由PBF-LB和PBF-EB产生的316L部分的典型表面粗糙度(RA)值分别为〜10 µm [9]和〜30 µM [10]。在PBF-LB和PBF-EB之间获得的表面粗糙度的巨大差异是无关的。在比较PBF-LB和PBF-EB时,已经报道了TI6AL4V的可比较表面粗糙度值。对于PBF-LB标本,在构建方向上测量了〜8 µm的RA,而对于PBF-EB,观察到RA为〜23 µm [11]。无论相关的AM过程如何,印刷的部分通常都需要后处理才能实现所需的表面
犬乳腺肿瘤具有作为转化肿瘤学中自然发生的乳腺癌模型的巨大潜力,因为它们与人类乳腺肿瘤具有相同的环境风险因素、关键组织学特征、激素受体表达模式、预后因素和遗传特征。我们旨在开发允许对犬乳腺肿瘤 (CMT) 进行功能分析的体外工具,因为我们对驱动这些异质性肿瘤生长的潜在生物学了解甚少。我们建立了来自 16 名患者的 24 个类器官系的长期培养,包括来自正常乳腺上皮或良性病变的类器官。CMT 类器官重现了它们所来自的原发组织的关键形态学和免疫组织学特征,包括激素受体状态。此外,遗传特征(驱动基因突变、DNA 拷贝数变异和单核苷酸变异)在肿瘤-类器官对中得到保留。我们展示了 CMT 类器官如何成为体外药物测定的合适模型,并可用于研究特定突变是否可预测治疗结果。此外,我们可以对 CMT 类器官进行基因改造,并使用它们进行汇集的 CRISPR/Cas9 筛选,其中文库表示得到准确维护。总之,我们提出了一个强大的 3D 体外临床前模型,可用于转化研究,其中可以从同一患者体内繁殖来自正常、良性和恶性乳腺组织的类器官,以研究肿瘤发生。
从消费电子到电动汽车,电池在各个领域的重要性越来越重要,强调了精确电池模型的关键必要性。本评论描述了电池模型的四个主要类别:经验,等效电路,数据驱动和基于物理的模型。像Nernst和Shepherd模型这样的经验模型提供了简单性,但缺乏精确度。等效电路模型在简单性和准确性之间取得了平衡,尽管有验证约束。数据驱动的方法利用机器学习来准确预测电池性能,但需要高质量的数据集。基于物理学的模型集成了基本的电化学过程,以详细理解,尽管计算复杂性增强。比较分析以锂离子电池为重点,揭示了计算效率和准确性之间的权衡。具有电解质动力学的单个粒子模型及其扩展单粒子模型作为有效的选项出现,带有电解质动力学的单个粒子模型显示出有希望的精度,类似于单个粒子模型。此外,在不同的电池化学分子上进行比较,公布了不同水平的建模精度。本文比较了跨化学的不同电化学建模技术和辨别最佳方法。是电池建模技术之一的电化学模型,已在本研究中进行了详细研究和研究,并为文献提供了有关化学模型如何与哪种电化学模型一起使用的文献。此外,这项研究在Pybamm中使用优化技术有助于现有的铁磷酸锂化学建模。综合提供了对各种建模方法的见解及其对电池研究和开发的影响,从而指导未来的调查,以针对特定应用的更量身定制的建模策略。
