摘要:我们对大气流动的分层湍流和小尺度湍流状态进行了尺度分析,重点关注中间层。我们区分了旋转分层宏观湍流 (SMT)、分层湍流 (ST) 和小尺度各向同性 Kolmogorov 湍流 (KT),并指定了这些状态的长度和时间尺度以及特征速度。结果表明,浮力尺度 (L b ) 和 Ozmidov 尺度 (L o ) 是描述从 SMT 到 KT 的转变的主要参数。我们采用浮力雷诺数和水平弗劳德数来表征中间层的 ST 和 KT。该理论应用于高分辨率大气环流模型的模拟结果,该模型采用 Smagorinsky 型湍流扩散方案进行亚网格尺度参数化。该模型使我们能够推导出 KT 状态下的湍流均方根 (rms) 速度。我们发现湍流 RMS 速度在夏季有一个最大值,在冬季有两个最大值。冬季 MLT 中的第二个最大值与二次重力波破碎现象有关。该模型的湍流 rms 速度结果与基于 MF 雷达测量的完全相关分析非常吻合。提出了一种基于中尺度直接能量级联思想的中尺度水平速度新尺度。后者对中尺度和小尺度特征速度的发现支持了本研究提出的观点,即中尺度和小尺度中间层动力学在统计平均值上受 SMT、ST 和 KT 控制。
1 环境医学,奥格斯堡大学医学院,86156 奥格斯堡,德国;maria.plaza@tum.de (M.P.P.); franziska.kolek@tum.de (F.K.); vivien.leier-wirtz@tum.de (V.L.-W.); claudia.traidl-hoffmann@tum.de (C.T.-H.) 2 环境医学研究所,慕尼黑亥姆霍兹中心——德国环境健康研究中心,86156 奥格斯堡,德国 3 医疗保健运营/健康信息管理,奥格斯堡大学医学院商业与经济学院,86159 奥格斯堡,德国; jens.brunner@uni-a.de 4 Christine Kühne—过敏研究与教育中心 (CK-CARE),7265 达沃斯,瑞士 5 塞萨洛尼基亚里士多德大学科学学院生物学院生态学系,54124 塞萨洛尼基,希腊 * 通讯地址:dthanos@bio.auth.gr
46 《巴黎协定》(注 1)第 3 条。 47 Masson-Delmotte 等人(注 3)第 12 条。 48 同上第 17 条。 49 同上第 15 条。 50 Deutz 和 Bardow(注 17)第 203 页。 51 国际能源署 (IEA),“2020 年能源技术展望——碳捕获、利用和储存特别报告。清洁能源转型中的 CCUS” (IEA 2020) 第 22 页。 52 Ritchie 和 Roser(注 9)。 53 国际能源署,“2020 年能源技术展望” (国际能源署,2020) 第 22 页。
2.0 2022 年 2 月 使用《国家感染预防和控制手册》 (NIPCM) 方法审查有关空气过氧化氢净化系统的现有科学证据。添加了新建议。
摘要。本研究分析了电转液路线在化学领域合成费托石蜡的技术经济潜力。费托生产装置由电解产生的氢气和沼气升级产生的二氧化碳供应。在分析中,确定了德国和意大利的 17 个优先地点,这些地点可确保 1 吨/小时的二氧化碳流量。对于每个地点,估算了可用的二氧化碳流量以及风能和太阳能光伏的容量系数。使用基于元启发式的方法来确定所提系统的成本最优流程设计。因此,评估了氢气储存、电解器、光伏场和风力发电场的规模。该分析研究了从全电网到全可再生能源配置中来自电网的电力百分比不同的可能性。结果表明,全电网运行条件下费托合成蜡生产的最低成本为 6.00 欧元/千克,全可再生能源解决方案的最低成本为 25.1 欧元/千克。风能可用性在降低蜡成本方面发挥着关键作用。
在这里,我们探讨了探针分子(甲苯)在四种流行结构的 MOF 薄膜中的质量转移:HKUST-1、ZIF-8、UiO-66 和 UiO-67。HKUST 代表香港科技大学,ZIF 代表沸石咪唑酯框架,UiO 代表奥斯陆大学。使用石英晶体微天平 (QCM) 量化客体的吸附和扩散。将 MOF 薄膜暴露在普通环境空气中,并表征其对吸收性能的影响。虽然所有 MOF 薄膜的晶体度都是稳定的,如 X 射线衍射 (XRD) 所示,但我们表明,HKUST-1 和 UiO-67 中甲苯的吸附量和速率常数在暴露于环境空气后严重下降。另一方面,UiO-66 和 ZIF-8 是稳定的,吸附和扩散性能不受样品与实验室空气长期接触的影响。为了揭示缺陷并阐明降解机理,我们使用红外光谱,并将导致传质阻力增加的缺陷与之前描述的缺陷联系起来。对于 UiO-67,实验补充了使用不同客体分子以及 MOF 粉末的吸收实验,结果显示类似的降解和表面屏障演变。在 UiO-67 MOF 中发现的此类传质表面屏障尚未在 UiO 型 MOF 中出现。研究表明,尽管材料的结晶度
纳米级过渡金属三卡构基化金属元素(TMTC)(例如TIS 3)对基本研究和应用开发都显示出很大的潜力,但是他们的自下而上的合成策略仍应实现。在这里,我们探索了TIS 3的化学蒸气沉积(CVD)合成,其晶格各向异性使B轴的优先生长使矩形纳米片或纳米虫具有具有生长温度可调节的长宽比的矩形纳米片或纳米骨。获得的纳米结构,同时保持光谱和结构特性,如原始的半导体TIS 3的特性,表现出较高的电导率和超低载体激活屏障,这是纳米级导体。我们的实验和计算结果表明,CVD生长的TIS 3中存在S 2 2-空缺,导致重型N型掺杂到退化水平。此外,预计将半导体特性通过从环境中用氧原子钝化S 2 2-空位来恢复。这项工作因此预示着使用缺陷工程的三卡氏菌元素半导体构建纳米级电子的诱人可能性。
Pushparaj,K.,Ky,G.,Ayeni,A。J.,Alam,S。&Duong,V。N.(2021)。源自功能性磁共振成像的空中交通控制器中人类自动化信任的量子启发模型,与行为指标相关。航空运输管理杂志,97,102143-。https://dx.doi.org/10.1016/j.jairtraman.2021.102143
当电子技术面向医疗保健和食品领域时,设备的安全性就成为强制性要求。当电子系统需要与人体内部直接互动,与食物或药品一起摄入时,安全性就显得尤为关键。在这一框架下,可摄入电子产品迄今已取得显著进步,为新时代的诊断和治疗铺平了道路。[4–8] 然而,迄今为止可用的可摄入系统[9]除了体积设计和使用后需要回忆外,还存在严重缺陷,主要表现为使用有毒和非一次性材料,不仅对消费者健康而且对环境都构成危害。为此,最近提出“可食用电子产品”[10–12],设想电子系统能够满足关键的电子功能,同时具有可持续性、无毒、摄入安全且具有成本效益。这一新兴领域的独特之处在于利用不同性质的可食用材料(如食品、药物、食用金属、食用色素、染料和聚合物)作为电子元件,根据其电子特性,提供所有必要的构件:导体、绝缘体、半导体。由于绝对安全的成分,可食用设备在完成其任务后会在体内降解,这意味着不会产生任何潜在的副作用。由于处于新兴阶段,该领域的实例很少。然而,这一新范式的可行性依赖于几个鼓舞人心且颇为奇特的可食用原型,特别是基于食物的电子元件,例如奶酪超级电容器[13]、西兰花麦克风[14]、木炭基生物燃料电池[15]、丝绸传感器[16]基于食用色素的晶体管[12,17]等。为了履行跟踪、监控、传感和数据传输等基本电子职责,可食用电子系统将需要有源电路。在这种情况下,晶体管是未来可食用系统的骨干组件,低压/低功耗操作是必需的。