现代材料科学见证了先进制造方法的时代,从纳米到宏观尺度设计功能。虽然人们已经开发出了多功能制造和增材制造方法,但为特定应用设计材料的能力仍然有限。本文介绍了一种新颖的策略,该策略能够以目标为导向制造具有按需特性的超轻气凝胶。该过程依靠通过界面络合进行的可控液体模板来生成可调的、刺激响应的 3D 结构(多相)丝状液体模板。该方法涉及纳米级化学和纳米粒子 (NPs) 在液-液界面的微米级组装,以生产具有多尺度孔隙率、超低密度(3.05-3.41 mg cm −3)和高压缩率(90%)以及弹性回复和即时形状恢复特性的分层宏观气凝胶。超轻气凝胶面临的挑战已经得到克服,包括机械完整性差以及无法形成具有按需功能的预定义 3D 结构,以用于多种应用。该方法的可控性使得可调谐电磁干扰屏蔽具有高比屏蔽效率(39 893 dB cm 2 g − 1)和有史以来最高的吸油能力之一(氯仿气凝胶初始重量的 487 倍)。这些特性源于液体模板的可工程性,将轻质材料的界限推向系统功能设计和应用。
加利福尼亚理工学院的喷气推进实验室(JPL)是国家航空航天局(NASA)的主要研究与开发中心。实验室拥有广泛的宪章,用于太阳系的开发,地球观测,天体物理研究和技术开发。JPL管理NASA的星尘任务。
气凝胶增强毯:最新技术、市场准备和未来挑战 Umberto Berardi 1,*、Syed (Mark) Zaidi 1、Bryan Kovisto 1 1 加拿大安大略省瑞尔森大学。 * 通信电子邮件:uberardi@ryerson.ca 摘要 气凝胶增强产品通常被认为是提高建筑围护结构热阻的有前途的材料。特别是,气凝胶增强毯已经在多个改造项目中显示了其有效性。本文旨在回顾气凝胶增强毯的当前技术水平。在这些材料中,纤维基质将气凝胶结构粘合在一起,补偿了气凝胶的低机械性能,而不会降低其极低的导热系数。本文介绍了目前世界各地现有的由不同公司生产的气凝胶增强毯。然后,介绍了作者开发的一种新型气凝胶增强毯。热特性测试证实了气凝胶增强毯的卓越性能,其热导率低至 0.013 W/(mK)。最后,提出了气凝胶增强毯未来的研究挑战。关键词高性能围护结构、气凝胶、气凝胶增强毯、超级绝缘材料。引言旨在节约能源的创新材料的开发是建筑技术领域的主要关注点。在这种情况下,二氧化硅气凝胶增强产品通常被认为是提高建筑围护结构热阻的有前途的材料。虽然气凝胶似乎是一种很有前途但仍然不常见的材料,但全球二氧化硅基气凝胶市场每年继续以超过 10% 的速度增长,从 2016 年的 4.27 亿美元增长到 2022 年的 19.2 亿美元(GVR,2016 年)。如今,气凝胶增强产品的主要市场领域是石油和天然气田,这些领域主要使用气凝胶增强毯。然而,建筑和施工气凝胶市场领域的增长速度应该会高于其他领域 (Berardi 和 Nosrati,2018 年)。
在载人火星任务的背景下,描述了裂变碎片火箭发动机概念的电离辐射特性。这种推进系统利用悬浮在气凝胶基质中的微米级裂变燃料颗粒,可以在高功率密度(> kW/kg)下实现非常高的比冲量(> 10 6 s)。裂变芯位于电磁铁孔内,并位于外部中子减速剂材料内。低密度气凝胶可以对燃料颗粒进行辐射冷却,同时最大限度地减少与裂变碎片的碰撞损失,与以前的概念相比,可以更有效地利用裂变燃料产生推力。本文介绍了来自外部(例如银河宇宙射线)和内部(反应堆)源的宇航员机组人员的稳态电离辐射当量剂量的估计值。航天器设计包括一个离心概念,其中过境居住舱围绕航天器的重心旋转,为机组人员提供人工重力,并与核心分离。我们发现,裂变碎片推进系统与离心相结合可以缩短过境时间,降低等效辐射剂量,并降低长期暴露于微重力环境的风险。这种高比重脉冲推进系统将使其他载人快速过境、高 delta-V 行星际任务成为可能,其有效载荷质量分数远高于替代推进结构(化学和太阳能电力)。
噪音污染被恰当地描述为现代瘟疫之一。[1] 由于嘈杂的环境会对健康产生许多不利影响,从睡眠障碍到心血管疾病,减少人类接触过多噪音对于居住在城市的大量人口的公共健康至关重要。 关于吸音材料,最佳选择取决于预期的声音频率范围; 衰减高频声波的解决方案依赖于与极低频噪声解决方案完全不同的吸收机制。 在室内,最常用的吸音材料本质上是多孔的,因为它们能够以相对较薄的层有效吸收中高频声音。 市场上常见的多孔吸收材料,目标是在 350 Hz 以上吸收超过 90%,包括玻璃棉和矿棉以及由三聚氰胺或聚氨酯制成的吸音泡沫。 在这里,我们回顾了气凝胶的声学特性,并展示了它们挑战和超越当前市场标准的吸收特性的巨大潜力,无论我们谈论的是气凝胶在声学和声学方面的性能。
7 ................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. -2模式L结构-3 ............................................................................................................................................................................................................................................................................................................. 4 ....................................................................................................................................................................................... ....................................................................................................................................................................................................................................................................................................................................................................... 6 2.2建模.................................................................................................................................................................................................................................
有趣的是,由于坚固的 TPU 层可确保纤维的完整性,EAF 在 100% 应变下经过 10,000 次循环拉伸后仍能保持稳定的热绝缘性。足够的强度和灵活性使 EAF 适合编织和织成纺织品。因此,用 EAF 制成的毛衣的热导率 (26.9±1.8 mW/m·K) 远低于尼龙 (91.2±1.6 mW/m·K)、聚对苯二甲酸乙二醇酯 (98.3±1.9 mW/m·K) 和羊毛 (38.9±1.1 mW/m·K) 纺织品。在同等隔热性能的情况下,用 EAF 编织的薄毛衣厚度仅为羽绒服的五分之一左右。此外,这种 EAF 编织的薄毛衣还表现出出色的耐洗性和可染性,并且不会明显损害其保暖性,这对于扩大规模至关重要。此外,作者还使用工业剑杆织机来编织
摘要:果胶气凝胶,密度非常低(约0.1 g cm -3)和高比表面积(高达600 m 2 g -1),是出色的热绝缘材料,因为它们的导热率低于环境条件下的空气(0.025 w m -1 k -1 k -1)。然而,由于其内在亲水性,与水蒸气接触时果胶气凝胶塌陷,失去了超跨性能。在这项工作中,首先制作了果胶气凝胶,并研究了不同过程参数对材料结构和特性的影响。所有纯果胶气凝胶的密度低(0.04-0.11 g cm-1),高比表面积(308–567 m 2 g - 1)和非常低的热电导液(0.015-0.0.023 w m-1 k-1 k-1)。然后,使用不同的反应持续时间(2至24 h),通过甲基三甲氧基硅烷的化学蒸气沉积果胶疏水凝胶。通过在气候腔中进行调节(25℃,80%的相对湿度),记录了疏水性对材料特性的影响,尤其是对热导率的影响。疏水导致与整洁的果胶气凝剂相比,导热率的增加。mTMS沉积16小时有效地在潮湿的环境(接触角115°)和稳定材料特性(0.030 w m -1 k -1)和测试周期为8个月的测试周期中没有波动的材料(0.030 w m -1 k -1),有效地溶出了果胶气凝胶和稳定材料的稳定材料特性。
摘要:三维多孔石墨烯气凝胶具有较高的表面积,可以将大量纯相变材料 (PCM) 容纳到内部空间。为了保持 PCM 的柔韧性而不在外力作用下体积收缩,采用半胱胺蒸汽法制备了交联石墨烯气凝胶。交联石墨烯气凝胶具有较高的应力应变耐久性和化学稳定性,可以渗透 PCM 以产生形状稳定的 PCM 复合材料。PCM 的潜热是估算相变过程中 PCM 热能存储 (TES) 容量的要素之一。交联石墨烯气凝胶支撑的 PCM 复合材料显示出很高的 TES,可用于热能到电能的收集。交联石墨烯气凝胶还具有优异的机械性能,可在高温下防止损坏。
Nasrullah Shah 博士是巴基斯坦马尔丹阿卜杜勒瓦利汗大学 (AWKUM) 的副教授,同时以富布赖特学者的身份在美国堪萨斯州立大学从事研究工作。Shah 博士拥有韩国 KNU 化学工程博士学位。他曾在英国谢菲尔德大学从事博士后工作。Shah 博士在先进材料的制造、特性和应用领域拥有丰富的经验。他在知名国际期刊上发表了多篇研究出版物,被引用 1031 次。Shah 博士擅长用于生物医学、环境和分析应用的增材制造复合材料。最近,他正在从事基于增材制造(3D 打印)的材料项目,并提交了该领域的论文发表。Shah 博士获得过多项奖项,包括 KNU 博士荣誉奖学金和 AWKUM 博士后优异奖学金。富布赖特博士后奖以及巴基斯坦高等教育学院的三项研究资助。