可充电锌空气电池(ZABS)被认为是在便携式电子,电动汽车和电化学能源存储技术中最有前途的候选者之一,因为它们的高能量密度,环境友好,低成本和出色的安全性。1特殊的高能量密度归因于图1 A所示的无限氧气量,而能量仅受金属Zn(820 a H kg -1)的限制。然而,实际使用Zn-Air电池会面临几个问题,包括实际容量低,能源效率差和循环稳定性不足。一方面,Zn电极在操作过程中引起了一系列挑战,包括钝化,树突和氢的演化,这导致了较低的Zn利用率和较差的循环稳定性。另一方面,空气电极上的催化剂对氧气的电化学反应的催化活性不足,这直接导致高电势和低能效率(〜60%,排放:〜1.2 V,电荷,电荷:〜2.0 V)。2因此,最近的研究强调了两个关键领域:Zn电极的复杂工程以及用于氧还原反应(ORR)和氧气演化反应(OER)的贵族无金属双功能催化剂的发展。3尽管在小型实验室电池系统中展示了令人鼓舞的结果,但将这些进步转移到广泛的实际应用中带来了重大挑战。
增加了制造高能量可充电电池的需求。1在各种环保能量转换技术中,锂 - 硫酸锂(Li-S)电池被认为是储存能量的新兴替代方案,并且具有2600 W H kg 1的理论能量密度和低环境影响。2此外,关于商业欲望表,Li – s电池远远超出了当前的锂离子电池。硫磺的非凡品质,例如负担能力和生态友好性,使Li – S Batteres成为许多企业的首选。它们不仅提供了更好的性能,而且还与对可持续能源解决方案的不断增长的需求保持一致。但是,他们的广泛实施仍然存在重大障碍。硫的电导率较差,这在其使用方面构成了挑战。此外,在循环过程中发生了明显的体积膨胀。进一步的挑战与有机电解质中溶解的嘴唇中间体的电化学溶解和运输有关。上述现象被称为穿梭效应,代表了高效
摘要:将高度多孔石墨烯(GO)气凝胶整体加热到超高温度的闪光灯加热被用作低碳足迹技术,以设计功能性气凝胶材料。首次证明了Airgel Joule加热至3000 K,并具有快速加热动力学(〜300 K·min-1),从而实现了快速和节能的闪光加热处理。在一系列材料制造的挑战中利用了超高温度闪光灯焦耳加热的广泛适用性。超高温度焦耳加热用于快速在快速时间尺度(30-300 s)的水热气凝凝胶快速地石墨退火,并大大降低了能量成本。闪光气凝胶加热至超高温度,用于原位合成超铁纳米颗粒(PT,CU和MOO 2)的原位合成,并嵌入了混合气瓶结构中。冲击波加热方法可以使形成的纳米颗粒的高渗透量均匀性,而纳米颗粒的大小可以通过控制1到10 s之间的焦耳加热持续时间来轻松调节。因此,此处介绍的超高温度加热方法对基于石墨烯的气凝胶的多种应用具有重要意义,包括3D热电材料,极端温度传感器和流动中的气瓶催化剂(电)化学。■简介
Terahertz(THZ)技术提供了从卫星和望远镜的校准目标到通信设备和生物医学成像系统的机会。一个主组件将是具有切换性的宽带THZ吸收器。然而,稀缺的具有光学切换的材料,它们的调制大多在狭窄的带宽下可用。在吸收或传播中实现具有大型和宽带调制的材料构成了关键的挑战。这项研究表明,进行聚合物 - 纤维素气凝胶可以提供宽带THZ光的调制,其调制范围很大,概率为≈13%至91%,同时保持镜面反射损失<-30 dB。特殊的THZ调制与导电聚合物的异常光学电导率峰有关,从而增强其氧化态的吸收。这项研究还证明了通过简单的化学修饰降低表面亲水性的可能性,并表明在光学频率下宽带吸收气凝剂可以通过太阳能诱导的加热来降低质量。这些低成本,水溶液可加工,可持续和生物友好的气凝胶可能会在下一代智能THZ设备中使用。
现代材料科学见证了先进制造方法的时代,从纳米到宏观尺度设计功能。虽然人们已经开发出了多功能制造和增材制造方法,但为特定应用设计材料的能力仍然有限。本文介绍了一种新颖的策略,该策略能够以目标为导向制造具有按需特性的超轻气凝胶。该过程依靠通过界面络合进行的可控液体模板来生成可调的、刺激响应的 3D 结构(多相)丝状液体模板。该方法涉及纳米级化学和纳米粒子 (NPs) 在液-液界面的微米级组装,以生产具有多尺度孔隙率、超低密度(3.05-3.41 mg cm −3)和高压缩率(90%)以及弹性回复和即时形状恢复特性的分层宏观气凝胶。超轻气凝胶面临的挑战已经得到克服,包括机械完整性差以及无法形成具有按需功能的预定义 3D 结构,以用于多种应用。该方法的可控性使得可调谐电磁干扰屏蔽具有高比屏蔽效率(39 893 dB cm 2 g − 1)和有史以来最高的吸油能力之一(氯仿气凝胶初始重量的 487 倍)。这些特性源于液体模板的可工程性,将轻质材料的界限推向系统功能设计和应用。
在载人火星任务的背景下,描述了裂变碎片火箭发动机概念的电离辐射特性。这种推进系统利用悬浮在气凝胶基质中的微米级裂变燃料颗粒,可以在高功率密度(> kW/kg)下实现非常高的比冲量(> 10 6 s)。裂变芯位于电磁铁孔内,并位于外部中子减速剂材料内。低密度气凝胶可以对燃料颗粒进行辐射冷却,同时最大限度地减少与裂变碎片的碰撞损失,与以前的概念相比,可以更有效地利用裂变燃料产生推力。本文介绍了来自外部(例如银河宇宙射线)和内部(反应堆)源的宇航员机组人员的稳态电离辐射当量剂量的估计值。航天器设计包括一个离心概念,其中过境居住舱围绕航天器的重心旋转,为机组人员提供人工重力,并与核心分离。我们发现,裂变碎片推进系统与离心相结合可以缩短过境时间,降低等效辐射剂量,并降低长期暴露于微重力环境的风险。这种高比重脉冲推进系统将使其他载人快速过境、高 delta-V 行星际任务成为可能,其有效载荷质量分数远高于替代推进结构(化学和太阳能电力)。
摘要 石墨烯气凝胶纤维(GAF)兼具石墨烯的轻质、高比强度和导电性等优点,在多功能可穿戴纺织品中展现出巨大潜力。然而,GAF 纺织品的结构稳定性低,大大限制了其制备和应用。本文报道了一种塑性膨胀法制备高性能、多功能 GAF 纺织品。GAF 纺织品是通过塑性膨胀、预织氧化石墨烯纤维(GOF)丝束纺织品实现的。这种近固体的塑性膨胀工艺使纺织品中的 GAF 保持较高的结构有序性和可控的密度,在密度为 0.4 g cm −3 时表现出高达 103 MPa 的高拉伸强度和高达 1.06×10 4 S m −1 的电导率。GAF 纺织品表现出 113 MPa 的高强度、多种电学和热功能以及高孔隙率,可作为更多功能客体的主体材料。塑性膨胀为制造各种气凝胶纤维纺织品提供了一种通用策略,为其实际应用铺平了道路。
介孔聚酰胺(PA)气凝胶在化学结构上与杜邦的凯夫拉尔(Kevlar)相似,是一种在空域应用中测试的先进的热绝缘材料。不幸的是,整体气瓶很容易吸收湿度(从潮湿的空气中),从而极大地改变了其机械性能。PA气门的抗压强度在水含量增加时首先增加,但随后在额外的水合后会降低。为了为这种非单调变化提供连贯的解释,气凝胶是逐步进行的,其水合机制通过多尺度实验表征阐明。通过固态和液态核磁共振(NMR)光谱研究分子结构,并在每个平衡水合状态下通过小角度中子散射(SAN)进行形态。重建了分子水平和纳米体系结构中的物理化学变化。第一个水分子结合了Pa大分子的分子间H键网的空缺,从而增强了该网络并引起一致的形态变化,从而导致了整体的巨镜。其他水破坏了大分子的原始H键网络,这会导致其增加的节段运动,这标志着空心骨架的纳米化纤维部分溶解的开始。这最终使整体塑造。
L. An 博士、B. Liang、CN Li、YL Huang 博士、Y. Hu、Z. Li、JN Armstrong 教授、D. Faghihi 教授、SQ Ren 教授,纽约州立大学布法罗分校机械与航空航天工程系、能源环境与水研究所研究与教育,美国纽约州布法罗 14260。电子邮件:shenren@buffalo.edu JY Wang,SQ Ren 教授 纽约州立大学布法罗分校化学系,美国纽约州布法罗市 14260 Z. Guo,C. Zhou 教授 纽约州立大学布法罗分校工业与系统工程系,美国纽约州布法罗市 14260 SQ Ren 教授 纽约州立大学布法罗分校能源、环境与水 (RENEW) 研究所研究与教育,纽约州布法罗市 14260 关键词:可穿戴纺织品、芳纶纤维、恶劣环境、气凝胶复合材料、制造