为了有效解决人类所面临的日益复杂的问题,最新的发展趋势是应用大量不同类型的传感器来收集数据,以便建立基于深度学习和人工智能的有效解决方案[1-4]。这不仅对传感器产生了巨大的需求,提供了商业机会,也为传感器设备及其相关应用的开发带来了新的挑战[5,6]。这些将人工智能与传感器相结合的技术发展正被积极地应用于医疗保健、制造业、农业和渔业、交通运输、建筑、环境监测等各个应用领域。例如,在环境监测中,集成了深度学习和人工智能算法的传感器能够快速分析大量数据集,实时识别模式、异常和趋势[7,8]。以天气预报为例,人工智能驱动的传感器可以从卫星、气象站和无人机等各种来源收集数据,从而更精确地预测天气模式。通过深度学习模型,传感器可以动态调整和整合新数据,从而随着时间的推移提高其预测准确性。此外,在工业环境中,人工智能增强的传感器在优化制造运营方面发挥着至关重要的作用,可以监测设备健康状况、预测潜在故障并提前安排维护 [ 9 – 12 ]。这种方法减少了运营停机时间并提高了整体效率。在此背景下,“传感器和应用中的人工智能和深度学习”特刊收集了关于人工智能(特别是深度学习)和传感器技术在各个领域的新发展的高质量原创贡献,以及分享想法、设计、数据驱动的应用程序以及生产和部署经验和挑战。本期特刊征文主题包括制造、机械和半导体的应用和传感器;建筑、施工、楼宇、电子学习的智能应用和传感器;推荐系统;自动驾驶汽车、交通监控和运输的应用和传感器;物体识别、图像分类、物体检测、语音处理、人类行为分析;以及其他相关传感应用 [ 13 , 14 ]。
摘要:地静止的扩展观测或Geoxo是NOAA的未来地静止卫星星座,该星座将于2030年代初发射,并将其运行到2050年代。鉴于对地球系统的变化,技术的改进以及卫星数据使用者的不断扩展的需求,Geoxo将通过添加三个新仪器和一个新的航天器来扩展NOAA当前的观察套件。改进的成像仪和闪电映射器的版本将再次放置在东西方卫星上,在那里他们将监视严重的风暴,热带气旋,火灾和其他危害。它们将通过一种旨在检测有害藻华,浮游植物,叶绿素和其他成分的海洋色仪器加入。第三个地静止航天器将放置在美国中心,并将携带高光谱红外发音器,一种大气组成工具,并可能是合作伙伴有效载荷。来自音响器的辐射将被吸收到数值天气预测模型中,以改善预测,并且衍生的温度和水蒸气垂直曲线的检索将使预报员可以检测和跟踪增强不稳定性的区域。从新的大气组成仪器中检索诸如二氧化氮和臭氧的污染物以及从气候监测之外的空气质量监测,预测和警告,还将用于改善空气质量监测,预测和警告。完成后,Geoxo星座将有助于卫星的国际“地理环”,该卫星将用于全球天气,海洋,气候和空气质量监测。这个革命性的新地静止卫星星座将为不断变化的地球系统提供关键的观察。
1广州大学,广州大学建筑与城市规划学院,中国510006; chenzijinggzhu@outlook.com(Z.C. ); haojuny1202@outlook.com(H.Y. ); lijianjun@gzhu.edu.cn(J.L. ); chengliang.fan@gzhu.edu.cn(c.f.) 2广州大学的建筑设计与研究所,中国510405; ikeccch@outlook.com(B.C. ); chewy0917@outlook.com(q.r。) 3广东污染过程和控制的广东省级主要实验室,环境科学与工程学院,广东大学石化技术大学,摩梅山525000,中国4号国家主要的实验室,土木工程和运输学院主要实验室。 mingl6371@outlook.com 5汤吉大学设计与创新学院,上海200092,中国; Zhoushiqi1965@outlook.com 6 Bartlett建筑学院,伦敦大学学院,伦敦WC1N 1EH,英国; ucbqy55@ucl.ac.uk 7新加坡南南技术大学的民用与环境工程学院,新加坡639798; ctansk@ntu.edu.sg *通信:landwangmo@outlook.com(M.W. ); dqzhang3377@outlook.com(d.z。)1广州大学,广州大学建筑与城市规划学院,中国510006; chenzijinggzhu@outlook.com(Z.C.); haojuny1202@outlook.com(H.Y.); lijianjun@gzhu.edu.cn(J.L.); chengliang.fan@gzhu.edu.cn(c.f.)2广州大学的建筑设计与研究所,中国510405; ikeccch@outlook.com(B.C. ); chewy0917@outlook.com(q.r。) 3广东污染过程和控制的广东省级主要实验室,环境科学与工程学院,广东大学石化技术大学,摩梅山525000,中国4号国家主要的实验室,土木工程和运输学院主要实验室。 mingl6371@outlook.com 5汤吉大学设计与创新学院,上海200092,中国; Zhoushiqi1965@outlook.com 6 Bartlett建筑学院,伦敦大学学院,伦敦WC1N 1EH,英国; ucbqy55@ucl.ac.uk 7新加坡南南技术大学的民用与环境工程学院,新加坡639798; ctansk@ntu.edu.sg *通信:landwangmo@outlook.com(M.W. ); dqzhang3377@outlook.com(d.z。)2广州大学的建筑设计与研究所,中国510405; ikeccch@outlook.com(B.C.); chewy0917@outlook.com(q.r。)3广东污染过程和控制的广东省级主要实验室,环境科学与工程学院,广东大学石化技术大学,摩梅山525000,中国4号国家主要的实验室,土木工程和运输学院主要实验室。 mingl6371@outlook.com 5汤吉大学设计与创新学院,上海200092,中国; Zhoushiqi1965@outlook.com 6 Bartlett建筑学院,伦敦大学学院,伦敦WC1N 1EH,英国; ucbqy55@ucl.ac.uk 7新加坡南南技术大学的民用与环境工程学院,新加坡639798; ctansk@ntu.edu.sg *通信:landwangmo@outlook.com(M.W. ); dqzhang3377@outlook.com(d.z。)3广东污染过程和控制的广东省级主要实验室,环境科学与工程学院,广东大学石化技术大学,摩梅山525000,中国4号国家主要的实验室,土木工程和运输学院主要实验室。 mingl6371@outlook.com 5汤吉大学设计与创新学院,上海200092,中国; Zhoushiqi1965@outlook.com 6 Bartlett建筑学院,伦敦大学学院,伦敦WC1N 1EH,英国; ucbqy55@ucl.ac.uk 7新加坡南南技术大学的民用与环境工程学院,新加坡639798; ctansk@ntu.edu.sg *通信:landwangmo@outlook.com(M.W.); dqzhang3377@outlook.com(d.z。)
太空系统司令部启动 EWS 立方体卫星技术演示 摘要:太空系统司令部的电光/红外气象系统立方体卫星技术演示成功搭载 SpaceX 的 Transporter-10 小型卫星共乘任务发射。这项为期一年的 EWS 立方体卫星技术演示将验证新兴的太空 EO/IR 辐射成像技术,该技术使用较小的传感器,从低地球轨道提供及时的气象图像数据。加利福尼亚州埃尔塞贡多——3 月 4 日,太空系统司令部 (SSC) 从加利福尼亚州范登堡太空部队基地搭载 SpaceX 的 Transporter-10 小型卫星共乘任务发射了其电光/红外 (EO/IR) 气象系统 (EWS) 立方体卫星技术演示。为期一年的 EWS 立方体卫星技术演示将验证新兴的太空 EO/IR 辐射成像技术,该技术使用较小的传感器,从低地球轨道 (LEO) 提供及时的天气图像数据。“EWS 立方体卫星技术演示工作代表了 SSC 继续致力于与非传统合作伙伴合作,以拓宽竞争性工业基础,同时培育潜在的突破性解决方案,”EWS 物资负责人兼项目经理 Joe Maguadog 中校说。“如果成功,这将提供一种创新的选择来提供我们渴望评估的太空环境监测数据,这对于使我们部署在世界各地的部队能够计划和执行战区联合行动至关重要。这次演示将为我们向更经济、可扩展且更具弹性的 EO/IR 气象星座的过渡提供信息。” 2020 年 6 月,EWS 计划通过竞争选择了非传统政府承包商 Orion Space Solutions (OSS) 来交付用于此次演示的立方体卫星。这次任务迅速重建了之前的 EWS 立方体卫星技术演示原型能力,该原型在 2023 年 1 月经历了在轨分离异常。美国太空部队 (USSF) 与 OSS 密切合作,能够在不到 30 天的时间内授予新合同,并在短短 10 个月内开发了另一颗卫星。
中队(第 18 战斗气象中队)简介 1-1. OL-C 的使命。OL-C 为诺沃塞尔堡、美国陆军航空兵卓越中心 (USAACE) 以及本条例 (Reg) 列出的诺沃塞尔堡的其他指定和租户单位提供气象支持。 1-2. OL-C 概述。OL-C 隶属于第 18 战斗气象中队、第 93 空中和集团作战联队、空战司令部。OL-C 是一支由气象技术人员和电子技术人员组成的团队,位于凯恩斯陆军机场 (AAF)。在当地,OL-C 隶属于 USAACE G3 空中。 1-3. 联系信息。 OL-C 位于阿拉巴马州诺沃塞尔堡华莱士街 30101D 号楼,邮编 36362。值班预报员的电话号码为 (DSN) 558-8385/8397,商业电话为 334-255-8385/8397。1-4. OL-C 职责。OL-C 的主要职责是为 USAACE 航空飞行训练提供量身定制的任务规划和执行气象服务,并为诺沃塞尔堡综合设施提供资源保护。这些服务在本条例第二章和第三章中概述,相互支持和职责在第四章中概述。 OL-C 提供的所有气象服务均按照 (IAW) 附录 A 中列出的职责优先顺序完成。维护工作中心负责维护位于阿拉巴马州 Echo 的多普勒气象雷达,以及凯恩斯 AAF、Hanchey 陆军直升机场 (AHP)、Lowe AHP 和 Shell AHP 的自动气象传感器。空军和陆军在气象保障方面的一般职责在陆军条例 (AR) 115-10/空军指令 (跨军种出版物) (AFI 15-157 (IP) (美国陆军气象保障) 和 AR 5-25 (陆军气象职能活动) 中列出。1-5. 向非国防部 (DOD) 机构/个人发布气象信息。OL-C 不会向非国防部机构或个人发布气象信息,除非事先与诺沃塞尔堡设施运营中心 (IOC) 协调以应对恶劣天气事件,或与公共事务办公室 (PAO) 协调以应对常规气象信息。IOC 或 PAO 将在发布任何信息之前提供书面协调证据。1-6. 向国防部机构/个人发布气象信息。OL-C 必须在发生与气象有关的飞机事故(A 类、B 类、或 C) 或发生恶劣天气事件,导致岗位受损。这些报告将尽快准备好并分发给相关机构。如果发生恶劣天气事件,天气摘要将发送给 IOC。所有报告将发送给第 18 届 CWS 和 USAACE G3。凯恩斯 AAF、Hanchey AHP、Lowe AHP 和 Shell AHP 的基本气候学可在 OL-C 主页 https://home.army.mil/novosel/index.php/weather 上找到。任何其他数据请求都应至少提前三天通知。
英国气象局于 1854 年成立,并非凭空而来。它是三大洲创新思想的开拓性工作的产物。1839 年 10 月 17 日,美国海军军官马修·方丹·莫里在一次驿马车事故中受重伤。这结束了他的航海生涯,随后他被任命为美国海军天文台美国海军海图和仪器仓库的主管。他意识到,他现在拥有数千条关于风、天气和洋流的观测数据,如果将它们整理成可用和可共享的格式,将对海员大有裨益。莫里还为美国海军军官和海员制作了特殊的图表和表格,以便他们继续发送观测数据,并将所有这些数据汇总到他的风和洋流图中,从而使航行更快、更安全。莫里对此并不满足,他觉得,如果开发出一个国际系统,他可以取得更大的成就。
近年来,加利福尼亚(CA)野火的强度和频率增加,造成了对人类健康和财产的重大损害。2007年10月,许多小型火灾事件,共同称为巫婆溪火或女巫大火,在加利福尼亚南部开始,并在强烈的圣安娜风中加剧。作为当前中尺度建模功能的测试,我们使用天气研究和预测模型(WRF)模型在气象条件下模拟2007年野火事件。本研究的主要目标是研究水平网格分辨率和行星边界层(PBL)方案对与大火相关的气象条件模型模拟的影响。我们评估了WRF模型的预测能力,以模拟关键气象和火灾天气预测参数,例如风,水分和温度。这项研究的结果表明,可以通过将区域数值预测产物降低到1 km的分辨率来实现与更好预测野火相关的温度和风速相关的预测。此外,对近地表条件的准确预测取决于行星边界层参数化的选择。与YSU参数化相比,MYNN参数化得出更准确的预测。以1 km的分辨率下的WRF模拟可以更好地预测温度和风速的预测,而不是2007年女巫大火期间的相对湿度。总而言之,具有更精细的网格分辨率模拟的MYNN PBL参数化方案可改善野火事件期间近地表气象条件的预测。
摘要。小型山区集水区的水文模型特别具有挑战性,因为气象施加所需的高时空分辨率。的原位测量通常很少。降水重新分析提出了使用水文模型模拟流流的不同替代方案。在本文中,我们使用具有细胞空间和温度分辨率的不同气象产物来评估代表小型山区流域(<300 km 2)的一些关键过程(<300 km 2)的表现。评估是对法国北部阿尔卑斯山的55个小流域进行的。虽然在大多数配置中都充分再现了相似的流流量,但这些评估强调了雷达测量值的附加值,尤其是对于循环事件的再现。但是,仅获得这些更好的性能,因为水文模型纠正了累积量的估计(例如,年度)来自高海拔地区的雷达数据。
i SS U E D:12/01/2024当前的ElNiño-Southern振荡(ENSO)状态:ElNiño事件持续存在。气候模型前景表明,厄尔尼诺现象处于或接近其峰值,该事件可能会在未来几个月内变弱,在2024年秋季返回中性。ENSO展望将保持厄尔尼诺现状,直到此事件衰减,或者出现可能出现LaNiña的迹象。厄尔尼诺现象通常导致Rarotonga和南部库克群岛的降雨量减少。对于Penrhyn和北部库克群岛来说,相反的情况是,通常降雨量的数量超过了正常的降雨量。也预计还会有温暖的日子。库克群岛的气象服务以及区域气候伙伴将继续密切监视热带太平洋的条件以及进一步发展的模型前景。地位摘要:12月,北部库克群岛没有观察到极端。在3个月和6个月的时间尺度上观察到曼尼基的湿条件,但在12个月的时间表上观察到北部库克群岛(Penrhyn,Rakahanga,Pukapuka,Pukapuka,Pukapuka,Pukapuka,Pukapuka,Pukapuka,Nassau和Suwarrow)的干燥条件。是南部库克群岛(Aituaki,Atiu,Mangaia,Mauke,Mitiaro和Palmerston)的12月,它继续进行了3 - 6个月的时间。在12个月的时间尺度上没有观察到极端。Outlook摘要: