2003 年,EPA 审查了饮用水中的氟化物标准,发现口服氟化物对健康和暴露的影响有了新的数据。EPA 要求美国国家科学院 (NAS) 的国家研究委员会 (NRC) 对这些数据进行审查,2006 年,NRC 在题为《饮用水中的氟化物:EPA 标准的科学审查》的报告中发表了他们的评估结果。NRC 建议 EPA 更新其氟化物风险评估,以纳入新的健康风险数据和更好的总暴露估计值。该小组还建议 EPA 更新其公共卫生目标,除了当前公共卫生目标针对的 III 期氟骨症之外,还要预防牙釉质点蚀、临床 II 期氟骨症和骨折。
AE 不良事件 AESI 特别关注的不良事件 aQIV 佐剂四价流感疫苗 AR 不良反应 aTIV 佐剂三价流感疫苗 BIMO CBER 生物研究监测 BLA 生物制品许可证申请 CBER 生物制品评价与研究中心 CFR 联邦法规 CI 置信区间 CMC 化学、制造与控制 CRF 病例报告表 CSR 临床研究报告 FAS 完整分析集 FDA 食品药品管理局 GMT 几何平均滴度 HA 血凝素 HI 血凝抑制 ICH 国际协调会议 ILI 流感样疾病 LL 下限 MedDRA 监管活动医学词典 NOCD 新发慢性病 OBE 生物统计学和流行病学办公室 OVRR 疫苗研究与审查办公室 PeRC 儿科审查委员会 PI 说明书 PMC 上市后承诺 PMR 上市后要求 PPS 按照方案集PREA 儿科研究公平法案 PT 首选术语 QIV 四价流感疫苗 RT-PCR 逆转录聚合酶链反应 SAE 严重不良事件 sBLA 补充生物制品许可申请 SCR 血清转化率 SOC 系统器官分类 STN 提交追踪编号 US 美国 WHO 世界卫生组织
尽管霍尼韦尔国际公司(Honeywell International Inc.)认为,此处包含的信息是准确且可靠的,但它在没有任何形式的保证或责任的情况下提出,并且不构成表示或暗示的Honeywell International Inc.的任何代表或保证。许多因素可能会影响与用户材料结合使用的任何产品的性能,例如其他原材料,应用,配方,环境因素和制造条件,以及所有这些产品,所有这些都必须由用户考虑到生产或使用产品。用户不应假设本文中包含所有适当评估这些产品的必要数据。本文提供的信息并不能使用户免除进行自己的测试和实验的责任,并且用户假设所有风险和负债(包括但不限于与结果有关的风险,专利侵权,法规合规性以及健康,安全,安全,安全和环境)与产品和/或本文包含的信息有关。
氟化物在许多国家(例如中国,印度,澳大利亚,美国,埃塞俄比亚等)都是重要的污染物。过于低浓度的氟化物会导致骨质疏松症和腐烂,从而导致牙膏与氟化物一起使用。然而,由于天气干燥和地质条件,尤其是在含有氟化物污染的行业中,更多的区域的氟化浓度高于所需的氟化物。氟化物的饮用水标准由世界卫生组织统治为1.5 ppm,中国受监管的标准为1.0 ppm [1]。长期服用过多的氟化物会带来艾尔病,骨骼的流易病,牙齿流体病,肾结石,肠道和肝脏疾病等。因此,研究了不同的治疗技术以处理过多的氟化物。C. S. Boruff报道了使用氢氧化钙在1934年1月使用的含氧化钙来处理含氟化物的废水[2]。降水方法打开了伏地以去除氟化物。应用吸附,离子交换,电流,膜技术,溶剂提取和电吸附以从自然,生命和行业中删除氟化物[3-10]。离子交换需要离子交换树脂,这使得在离子交换列中易于交换氟化物。但是,离子交换树脂易于达到饱和,通常需要再生。电流使用可以将金属变为金属离子的电能。金属离子可以将氟化物结合起来,从而引起浮动。它带来了金属污染和功耗。氟化物可以被膜的孔径阻塞。膜结垢是该技术的重要风险。溶剂提取需要提取和反向提取。冗余过程限制了应用程序。吸附和电吸附使用材料与频率的键合能力。吸附也是处理水污染的重要方法[11]。电吸附是吸附的开发,该吸附是应用电场来增强材料以去除氟化物的结合能力。吸附材料是提高吸附能力,吸附率,高选择性,pH值,价格和回收特性的主要因素。在本文中,我们将讨论Fuoride的吸附材料,因为本文在本文中进行了大多数研究,涵盖了:(1)1930年至2000年吸附材料的过去:最初的准备工作,用于删除U-Oride的申请; (2)从2001年到2021年的吸附材料的当下:修改了有关氟化物去除的机制; (3)开发吸附剂的未来:设计,捕获氟化物的屏幕。这提供了开发吸附材料的时间表,用于处理含有氟化物的废水。
nbslcnls Poly(vinylidene fluoride)/Cu@Ni Anchored Reduced-Graphene Oxide Composite Films with Folding Movement to Boost Microwave Absorption Properties Biao Zhao, 1, 2,# Luyang Liang, 3,# Zhongyi Bai, 1 Xiaoqin Guo, 1 Rui Zhang, 1, 3 Qinglong Jiang 4,* and Zhanhu Guo 5,*摘要详细研究了详细研究了详细研究了详细研究了详细研究了详细研究了详细研究了详细研究了聚(vinylidene氟化物)/rgo/cu@ni复合膜的氧化石墨烯(RGO)/cu@ni加载和可折叠结构的影响。PVDF/RGO/CU@Ni复合膜的微波吸收特性随RGO/CU@ni含量增加而增加,然后降低,这是由于阻抗匹配的变化所致。此外,发现可折叠结构在可调和强大的微波吸收中起决定性作用。对于可折叠的PVDF/20 wt%rgo/cu@ni,厚度为2.5毫米,可以获得-49.1 dB的最小反射损失,并且带宽(低于-20 dB,99%的耗散)可以达到6.4 GHz(18.5-19.3 ghz,20.7-26.7-26.5 ghz)。
doi:10.6026/973206300200065生物信息影响因子(2023版本)为1.9,在2020年至2022年的引用为2,198个,用于if计算。出版伦理宣言:作者的国家,即他们遵守有关在https://publachication.org/其他地方所描述的有关出版道德准则的指南。作者还承认,他们与与本出版物相关的任何形式的不道德问题联系在一起的任何其他第三方(政府或非政府机构)无关。作者还宣布,他们没有拒绝任何误导出版商的信息。官方电子邮件上的声明:相应的作者宣布,所有作者许可证声明都不可用于其机构中的终身官方电子邮件:这是一份开放访问文章,允许在任何媒介中不受限制地使用,分发和复制,前提是原始工作得到了适当的信誉。这是根据读者的Creative Commons归因许可评论的条款分发的:在生物信息中发表的文章是针对相关发布的出版物评论和批评开放的,该评论和批评将立即发布到原始文章,而无需开放访问费用。评论应简洁,连贯和至关重要,少于1000个字。免责声明:表达的观点和观点是作者的观点,不反映生物信息的观点或观点和(或)其出版商生物医学信息学。生物医学信息学仍然保持中立,并允许作者指定其地址和隶属详细信息,包括在需要的情况下。生物信息为数据和信息提供了一个平台,以在生物/生物医学领域中创建知识。
标准氢电极),代表基于锂的可充电电池的理想负电极。[1,2]然而,无法控制的树突形成[3,4]和连续的电解质耗竭[5]证明了它们的实际实现。固体电解质相(SEI)是定义这些问题的关键概念,因为它的性质从根本上控制了在电极表面发生的化学物质。[6,7]了解SEI组成与Li li树突生长和溶解的动态过程之间的关系对于调整SEI至关重要,这将允许高循环效率。SEI修饰的多种方法已表现出改善的表现性能,例如采用富含氟化物的电解质,[5,8,9]增加了电解质盐浓度,[10,11]预先构建人工SEI,[12-14]和tai-Loring log-Loring与添加剂的电解液。[15–17]在这些不同的方法中,已经表明,富含流感的SEI的产生是实现库仑效率提高的一致因素。[18]这种富含氟化物的相间大大减少了分离的,电隔离的“死锂”的形成,因此抑制了效率损失的主要原因。[19,20]然而,了解SEI对
将氧化成SN IV物种,通过电子陷阱的不良形成和材料的P掺杂导致性能大幅下降。[6]先前的研究报道了这种氧化的许多起源,例如溶剂[7,8]处理条件[9],甚至是通过在锡贫乏环境中占比例的。[10]停止这种氧化是实现高效且稳定的锡卤化物PSC的要求之一。因此,已经进行了几项试验,以应对SN II的氧化。这些包括使用新的溶剂系统来避免二甲基硫氧化物(DMSO)氧化[11],[11]使用还原剂消除SN IV的含量,例如金属sn粉[12]或下磷酸[13]或介入添加剂来减轻诸如Snn IV的形成,snf snf,snf,snf snf snf snf snf。[6,14]
图6。(a)由DY3+离子和无bragg镜子的单个DY3+掺杂的活性层(参考)激活的微腔的光致发光光谱。插图:激发激光的光谱。(b)与没有bragg镜的参考样品相比,微腔的发光强度的入射角依赖性。
在土壤中存在多种细菌,但是在根际地区,大多数微生物有助于植物捍卫疾病并促进营养吸收。这些微生物得到了植物的支持,它们被称为植物生长 - 促进根瘤菌(PGPR)。PGPR有可能以对环境更有利的方式替代化学肥料。氟化物(F)是高度上升的,自然存在的污染物之一,由于其抗菌能力而可能对PGPR造成危害。F与地下水系统中不同细菌物种的相互作用尚不清楚。然而,PGPR与根际区域中植物的相互作用减少了污染物的有害作用,并增加了植物忍受非生物应激的能力。许多研究表明,PGPR已开发出F防御机制,其中包括外排泵,细胞内的隔离,酶修饰,增强的DNA修复机制,排毒酶,离子转运蛋白/抗胞蛋白,F核糖开关和遗传突变。这些耐药性特征经常是通过从高F污染区域分离PGPR或在实验室条件下将细胞暴露于氟化物中发现的。众多研究已经确定了F-F Transorters和F.植物的众所周知靶标的其他F转运蛋白和重复的F.植物易于F。pgprs可以用作土壤环境的有效f生物化体。环境生物技术专注于创建遗传修饰的根瘤菌,可以随着时间的流逝而降解F污染物。本综述着重于对当代生物技术技术(例如基因编辑和操纵方法)进行全面分析,用于改善植物 - 微生物相互作用以进行F修复,并表明PGPR在改善土壤健康和降低F毒性的有害影响方面的重要性。还强调了微生物援助领域的最新发展,在治疗F污染环境中也得到了强调。