摘要:生产和在不同应用中使用之前,可能需要纯化,运输,压缩和储存氢。氢通常存储在高压气缸中,作为低温下的液相,在打开的水箱中。这些方法带来了几个经济和安全问题。因此,液体或固体载体中的氢存储是适合将来应用的合适方法。将讨论金属和复杂氢化物中的氢吸收和解吸。的例子,包括添加剂在促进氢吸附反应中的作用。提出了使用金属氢化物作为氢载体的一些案例研究。介绍了用于储存可再生能源能量的高效金属氢化物系统的秘书项目,提供了大约50千克储存在金属氢化物中的氢。将描述一个为燃料电池驱动的无人机提供氢开发的小型氢加油站。生命周期评估(LCA)方法也很快描述了与发达系统相关的环境影响。最后,将概述主要的公开挑战,这为他们的克服提出了可能的方法。
我们是储氢领域的先驱,采用安全、紧凑且可持续的金属氢化物固态技术。该系统可实现较长的存储寿命,性能优于其他储氢技术,可用于储存来自可再生资源的绿色氢气
任何人都可以自由访问以“开放获取”形式提供的作品的全文。根据知识共享许可提供的作品可根据该许可的条款和条件使用。如果适用法律未免除版权保护,则使用所有其他作品均需要获得权利人(作者或出版商)的同意。
任何人都可以自由访问以“开放获取”形式提供的作品的全文。根据知识共享许可提供的作品可根据该许可的条款和条件使用。如果适用法律未免除版权保护,则使用所有其他作品均需要获得权利人(作者或出版商)的同意。
采用机器学习辅助方法在包含超过 150 000 种化合物的广泛数据集中搜索环境压力下的超导氢化物。调查结果显示约 50 个系统的转变温度超过 20 K,有些甚至达到 70 K 以上。这些化合物具有非常不同的晶体结构,具有不同的维度、化学组成、化学计量和氢的排列。有趣的是,这些系统中的大多数表现出轻微的热力学不稳定性,这意味着它们的合成需要超出环境平衡的条件。此外,在大多数这些系统中都发现了一致的化学成分,将碱金属或碱土元素与贵金属结合在一起。这一观察结果为未来在环境压力下对氢化物中的高温超导性进行实验研究提供了一条有希望的途径。
金属间金属氢化物是储氢应用的关键材料,然而,仍然需要具有更大储氢容量的金属氢化物。根据 Switendick-Westlake 标准,在金属氢化物中,体积储氢容量受限于可同时占据的容纳氢的间隙位点的数量,前提是最小氢化物最近邻距离约为 2.1 Å。到目前为止,违反此标准的情况很少。违反此标准的研究最深入的化合物可能是 R NiInH x 化合物(R = Ce、La、Nd)。先前对氘代物质的中子衍射研究表明存在 Ni–D∙∙∙D–Ni–D∙∙∙D–Ni 链,其 D∙∙∙D 接触异常接近,约为 1.6 Å。但尚无关于这些非典型氢化物的中子振动光谱研究报道。这里我们使用中子振动光谱 (NVS) 测量来探测 LaNiInH x ( x = 0.67, 1.6) 和 CeNiInH 1.4 中的氢动力学。当 x > 0.67 时,紧密的 H∙∙∙H 接触的存在产生了振动光谱中的两个相关特征,中心位于 ≈ 90 meV 附近,对应于同时占据相邻 R 3 Ni 四面体的配对 H 原子的振动。值得注意的是,当 x ≤ 0.67 时,这些特征在能量上与“未配对”H 原子的可比振动运动不同。为了进行比较,我们还对新表征的化学相似的 Sn 化合物 CeNiSnH、CeNiSnH 2 和 CeNiSnD 2 进行了粉末中子衍射和 NVS 测量。这些化合物也含有 R 3 Ni 四面体,但 H 占据的四面体彼此分离良好,最近的 H∙∙∙H 距离超过 2.1 Å,并且不违反 Switendick-Westlake 标准。因此,这些氢化物中不存在紧密 H∙∙∙H 接触的光谱特征。由 Elsevier BV CC_BY_4.0 发布
能量储能和转换材料对于新的可再生清洁能源的开发和利用至关重要(Li等,2016)。氢作为一种理想的能源载体,可以运输,可储藏和可转换,有可能成为解决能源安全,资源可用性和环境兼容性的解决方案(Martin等,2020)。在环境条件下的体积密度极低(0.0899 kg m-3),以安全,有效和经济方式存储氢是一个基于氢的经济发展的巨大挑战(Schlapbach和Züttel,2001年)。与加压气体或液化氢相比,将氢存储在金属氢化物中具有确定的优势,在重量和体积密度,安全性,安全性和能量效率方面,用于移动和固定应用(Wu,2008; He et al。,2019; Ouyang等,202020202020年)。由美国能源部(DOE)制定的标准用于轻型燃料电池车的机载氢存储,包括6.5 wt%的系统重力密度和50 kg H 2 m-3的体积密度,以及其他严格的特性以及其他严格的特性,例如操作温度(<85°C),<85°C),扩展的自行车生活,快速生命,快速的Kinet,安全性,安全性,安全性,和成本。Therefore, in the last decade tremendous efforts have been devoted to the research and development of light metal hydrides, including MgH 2 , alanates, borohydrides, amides/imides, which hold sufficiently high hydrogen capacity ( Orimo et al., 2007; Hansen et al., 2016; Yu et al., 2017; Liu et al., 2018; Schneemann et al., 2018; Zhou等人,2019年;ding等。Zeng等。Zeng等。这本特殊的基于金属氢化物的能量储能和转化材料的重点是轻质金属氢化物的合成,催化剂开发和纳米结构(MGH 2,ALH 3,NAALH 4和LIBH 4)作为氢存储介质。对这一特刊的八项贡献强调,金属氢化物是有希望的高密度氢存储的候选者。催化剂证明有效地减少了基于MG的材料中氢气和解吸的反应能屏障。报告了Co-Ni纳米催化剂的催化活性,具有不同的组成和形态,用于MGH 2的氢储存反应。CO部分替换Ni引起了形态学从球形到板的变化,发现对催化活性的影响较小,这可能是由于表面接触降低所致。prepared Ni and TiO 2 co-anchored on reduced graphene oxide [(Ni- TiO 2 )@rGO], which showed superior catalytic effects on the hydrogen desorption, as evidenced by the release of 1.47 wt% H 2 by MgH 2 within 120 min at 225 ◦ C. Wang and Deng ameliorated the performance of MgH 2 by using a core-shell Co@N-rich carbon (CoNC) based催化剂。在他们的工作中,MGH 2-5 wt%conco复合材料在325°C中释放了高达H 2的6.58 wt%。
摘要:Minkov等人报道了在超高压力下H 3 s的通量捕获磁化研究。是该氢化物系统中超导性的确切证据。这对已经引起争议的领域非常有帮助。然而,该结论是基于在低场处的明显零视场冷却(ZFC)线性磁化的质疑。标准BEAN模型将需要大约二次依赖性。在支持方面,我们注意到,所报告的ZFC磁化确实是超线性的,并且与薄盘的模型计算以及报告的ZFC磁化有关YBA 2 Cu 3 o薄膜的计算是一致的。我们得出的结论是,所报告的高压磁化数据与超导性完全一致,并且在此特定数据集中,没有理由拒绝氢化物超导性的原始推断。