任何人都可以自由访问以“开放获取”形式提供的作品的全文。根据知识共享许可提供的作品可根据该许可的条款和条件使用。如果适用法律未免除版权保护,则使用所有其他作品均需要获得权利人(作者或出版商)的同意。
任何人都可以自由访问以“开放获取”形式提供的作品的全文。根据知识共享许可提供的作品可根据该许可的条款和条件使用。如果适用法律未免除版权保护,则使用所有其他作品均需要获得权利人(作者或出版商)的同意。
摘要:Minkov等人报道了在超高压力下H 3 s的通量捕获磁化研究。是该氢化物系统中超导性的确切证据。这对已经引起争议的领域非常有帮助。然而,该结论是基于在低场处的明显零视场冷却(ZFC)线性磁化的质疑。标准BEAN模型将需要大约二次依赖性。在支持方面,我们注意到,所报告的ZFC磁化确实是超线性的,并且与薄盘的模型计算以及报告的ZFC磁化有关YBA 2 Cu 3 o薄膜的计算是一致的。我们得出的结论是,所报告的高压磁化数据与超导性完全一致,并且在此特定数据集中,没有理由拒绝氢化物超导性的原始推断。
采用机器学习辅助方法来寻找在包含超过15万种化合物的广泛数据集中的环境压力下的超导氢化物。调查产生≈50个系统,其过渡温度超过20 K,甚至达到70 K以上。这些化合物具有非常不同的晶体结构,具有不同的尺寸,化学成分,stoichiimementry,stoichiimentry,stoichiimentry和水合物的排列。有趣的是,这些系统中的大多数表现出轻微的热力学不稳定性,这意味着它们的合成将重新询问环境平衡的条件。此外,在大多数这些系统中都发现了一致的化学成分,该系统将碱或碱产量元素与高贵金属结合在一起。该观察结果表明,在环境压力下氢化物内的高温超导性进行了未来的实验研究途径。
摘要:生产和在不同应用中使用之前,可能需要纯化,运输,压缩和储存氢。氢通常存储在高压气缸中,作为低温下的液相,在打开的水箱中。这些方法带来了几个经济和安全问题。因此,液体或固体载体中的氢存储是适合将来应用的合适方法。将讨论金属和复杂氢化物中的氢吸收和解吸。的例子,包括添加剂在促进氢吸附反应中的作用。提出了使用金属氢化物作为氢载体的一些案例研究。介绍了用于储存可再生能源能量的高效金属氢化物系统的秘书项目,提供了大约50千克储存在金属氢化物中的氢。将描述一个为燃料电池驱动的无人机提供氢开发的小型氢加油站。生命周期评估(LCA)方法也很快描述了与发达系统相关的环境影响。最后,将概述主要的公开挑战,这为他们的克服提出了可能的方法。
•不包含环境危险物质(PB,CD)•体重较小且重量轻,可以在车辆上弹性安装•由于足够长的寿命而节省替换时间•由于不需要电解质补充而无需维护,因此不需要远程监控功能诊断•无需运输限制(无需9级)
采用机器学习辅助方法在包含超过 150 000 种化合物的广泛数据集中搜索环境压力下的超导氢化物。调查结果显示约 50 个系统的转变温度超过 20 K,有些甚至达到 70 K 以上。这些化合物具有非常不同的晶体结构,具有不同的维度、化学组成、化学计量和氢的排列。有趣的是,这些系统中的大多数表现出轻微的热力学不稳定性,这意味着它们的合成需要超出环境平衡的条件。此外,在大多数这些系统中都发现了一致的化学成分,将碱金属或碱土元素与贵金属结合在一起。这一观察结果为未来在环境压力下对氢化物中的高温超导性进行实验研究提供了一条有希望的途径。
摘要在超高压力下(例如,H 3 S和LAH 10)在基于氢化物的材料中的超导性观察引起了人们对发现新的高压氢化物超导体的更具数据驱动方法的兴趣。在这项工作中,我们进行了密度功能理论(DFT)计算,以预测(0-500)GPA的压力范围内900多种氢化物材料的临界温度(T C),在此,我们发现122个动态稳定的结构,在MGB 2(39 K)上方的t C上有122个T C c。为了加速筛选,我们训练了图形神经网络(GNN)模型,以预测T C,并证明可以使用通用机器学习的力场来放宽在任意压力下的氢化物结构,并大大降低了成本。通过组合DFT和GNN,我们可以在压力下建立更完整的氢化物图。
材料发现中的一个关键挑战是找到高温超导体。氢和氢化物材料长期以来一直被认为是有希望的材料,这些材料表现出传统的语音介导的超导性。但是,稳定这些材料所需的高压力限制了它们的应用。在这里,我们提出了高通量计算的结果,考虑到在环境压力下从周期表之间穿过二种高对称性三元氢化物。然后通过在直接估计超导临界温度之前考虑热力学,动态和磁性稳定性来减少这个较大的组成空间。这种方法揭示了一个可稳定的环境压力氢化物超导体Mg 2 IRH 6,预测的临界温度为160 K,可与最高温度超导底漆相当。我们通过与结构相关的绝缘子Mg 2 IRH 7提出了一条合成途径,该途径在15 GPA以上是热力学稳定的,并讨论这样做的潜在挑战。
摘要:由于对气候变化、环境恶化和能源安全的担忧,氢气作为能源载体的潜力得到了广泛认可,但氢气的储存和运输仍然是重大挑战。具有钙钛矿晶体结构的氢化物可以在较小的体积内储存大量的氢气,并且相对容易产生氢气。其中,三元钙钛矿氢化物 NaMgH 3 具有相对较高的理论储氢密度和氢吸收和解吸的可逆性。在本研究中,采用密度泛函理论框架下的第一性原理计算,研究了用 K ? 取代 Na ? 的影响。对Na1–xKxMgH3(x0:75Þ)结构、电子和储氢性能的影响。结果表明,用K–取代Na–导致晶格参数略有下降、晶胞体积增加,MgH6八面体变得更加扭曲,这是主体材料不稳定的一个很好的指标,最终导致分解温度从560.1降低到489.6K,这有利于储氢应用。