1.1 简要历史概述 ................................................................................................ 16 1.2 原理和电荷存储机制 ................................................................................ 18 1.2.1 电双层电容器 (EDLC) ................................................................ 20 1.2.2 赝电容器 ...................................................................................... 22 1.2.3 非对称超级电容器(电容式非对称超级电容器与混合超级电容器) ............................................................................. 24 1.3 超级电容器的电极材料 ............................................................................. 26 1.3.1 碳基材料 ............................................................................................. 27 1.3.2 过渡金属氧化物/氢氧化物 (TMOs/TMHOs) ............................................................. 32 1.4 电极材料的合成方法 ............................................................................................. 40 1.4.1 化学气相沉积 (CVD) ............................................................................. 40 1.4.2 电聚合/电沉积 ............................................................................. 41 1.4.3 水热/溶剂热法 ...................................................................................... 41 1.4.4 共沉淀法 .............................................................................................. 42 1.5 电极材料的电化学测量 .............................................................................. 42 1.5.1 超级电容器电极材料的指标 ...................................................................... 42 1.5.2 电极材料的电化学测量 ...................................................................... 43 1.6 论文目标和提纲 ............................................................................................. 50 1.7 参考文献 ............................................................................................................. 53 第 2 章 ............................................................................................................................. 80 用于混合超级电容器的层状双氢氧化物 (LDH) ............................................................. 80
PEG(环境与地质资源过程)研究部门围绕矿物化学(湿法冶金、形态形成、沉淀、结晶)这一中心主题,在过程工程和地质过程方面开展研究,实现从纳米到千米空间尺度变化的多相和多物理模型。该部门汇集了一个由大约十名讲师研究员组成的多学科社区,他们一方面具有过程工程和结晶背景,另一方面具有地球科学背景。该部门隶属于两个 CNRS 单位,包括 Georges Friedel 实验室(UMR CNRS 5307),负责工业维度的过程工程主题。在这种环境下,待填补的职位是 SPIN 中心其他部门更广泛动态的一部分,旨在开发过程工程无机化学。尽管SPIN中心,更具体地说是PEG部门,目前汇集了与地球科学、结晶、热力学、湿法冶金和多相流有关的多项技能,并希望加强无机化学方面的实验技能,以支持该部门现有的主题:
摘要:灯笼在光电子中主要用于掺杂剂,以增强半导体设备的物理和光学特性。在这项研究中,灯笼(III)氢氧化物纳米颗粒(LA(OH)3 NP)用作聚乙基亚胺(PEI)功能化的氮(N)掺杂的石墨烯量子点(PEI- N GQD)的掺杂剂。通过绿色新颖方法在单一步骤中从LA(NO)3中制备3个NPS掺杂的PEI- nps-n GQD纳米复合材料,并以傅立叶转换红外光谱(FT-IR)为特征(TEM)。 在n型Si晶圆上沉积,洛杉矶(OH)3 nps掺杂的PEI- N GQDS纳米复合材料形成Schottky Diodes。 I -V特性和二极管的光响应是根据照明强度在0-110 mW cm -2和室温下的照明强度的函数。 发现二极管的直接拟合比和理想性因子降低,而Schottky屏障和串联电阻随着增强的照明而增加。 作为光电探测器,LA(OH)3 nps掺杂的PEI- N GQD/N-SI异质结的表现出3.9×10 - 3 AW - 1在22 mW cm-2下,在-0.3 V偏见下,在22 mW cm-2下,最大检测到8.7×10 8 JONES的最大检测,并在8.7×10 8 JONES中进行了研究。呈现LA(OH)3 NPS掺杂的PEI-N GQD的结构,电气和光电特性,表明这些纳米复合材料对于光电应用程序有望有望。通过绿色新颖方法在单一步骤中从LA(NO)3中制备3个NPS掺杂的PEI- nps-n GQD纳米复合材料,并以傅立叶转换红外光谱(FT-IR)为特征(TEM)。在n型Si晶圆上沉积,洛杉矶(OH)3 nps掺杂的PEI- N GQDS纳米复合材料形成Schottky Diodes。I -V特性和二极管的光响应是根据照明强度在0-110 mW cm -2和室温下的照明强度的函数。发现二极管的直接拟合比和理想性因子降低,而Schottky屏障和串联电阻随着增强的照明而增加。作为光电探测器,LA(OH)3 nps掺杂的PEI- N GQD/N-SI异质结的表现出3.9×10 - 3 AW - 1在22 mW cm-2下,在-0.3 V偏见下,在22 mW cm-2下,最大检测到8.7×10 8 JONES的最大检测,并在8.7×10 8 JONES中进行了研究。呈现LA(OH)3 NPS掺杂的PEI-N GQD的结构,电气和光电特性,表明这些纳米复合材料对于光电应用程序有望有望。关键字:稀土元素,灯笼(III)氢氧化物掺杂,石墨烯量子点,绿色方法,纳米复合二极管,光敏性
电催化剂,能够在分子水平上精确调节缺陷和可及的活性中心。有趣的是,异质结构体系通常比均匀结构体系表现出更高的催化活性,这归因于电极结构/组成和界面性质的协同效应。[17–21] 在此,我们展示了如何利用 SURMOF 异质结构生长的机会及其独特的变态来产生具有特殊形貌和微观结构的金属氧/羟基材料。在 0.1 m KOH 中 300 mV 的过电位下,我们测得的氧释放质量活性约为 2.90 kA g −1,优于基准贵金属和非贵金属电催化剂。据我们所知,这是报道的 NiFe 基电催化剂的最高质量活性。据报道,SURMOF 可产生对水氧化具有高活性的电催化剂,但 MOF 基催化体系的电化学稳定性或转化以及活性物质的来源仍然不清楚。[22,23] 最近的研究集中于阐明 MOF 基催化体系中的活性物质,并通过一系列先进的物理化学技术发现在电化学测试的 (SUR)MOF 催化剂中存在金属氢氧化物。[24–27] 因此,推测所述活性物质来源于碱性电解质中氧电催化过程中的 MOF 衍生的金属氢氧化物。尽管最近有一些努力致力于阐明催化物质,但对转化机制和结构-性能关系的深入了解仍然是开放的。在这项工作中,我们使用由去质子化的对苯二甲酸 ([TA] 2 − ) 连接体组成的异质结构 NiFe 基 SURMOF,并利用结构和成分的变化来优化 OER 性能。实验表明,异质结构 SURMOF 在碱浸和电化学测量过程中经历了特定的原位重构和自活化过程,从而产生金属氢氧化物和羟基氧化物以及有机连接体的部分浸出。我们建议使用 SURMOF 作为前体,以便访问催化剂制造的参数空间,这超出了现有的合成概念。
该项目将支持展示先进回收技术的可扩展性、可靠性和成本效益。Cirba 计划改造其位于兰开斯特工厂的现有商业湿法冶金生产线,将 EOL LIB 中的黑色物质转化为中间混合金属硫酸盐溶液,然后再转化为纯化的混合金属氢氧化物。这种转化利用了一种新的专利工艺来回收纯化的混合镍、钴和锰氢氧化物。Cirba 与 Momentum Technologies 合作,后者是橡树岭国家实验室 (ORNL) 科学家开发的可扩展、节能、低成本和闭环膜溶剂萃取 (MSX) 工艺的授权方,用于将中间混合金属硫酸盐溶液分离成纯净的电池级硝酸盐。Cirba 还与 6K Inc. 合作,后者是将工程材料转化为推动增材制造行业发展的产品的领导者,用于生产 LIB 的原始阴极活性材料 (CAM)。最后,Cirba 将与 ORNL 等 DOE 国家实验室合作,使用这些 CAM 制造和验证与原始材料制成的 LIB 一样高效的功能性 LIB。
上图显示了嵌入锂离子的橄榄石状排列的 LFP。生产磷酸铁锂正极材料所涉及的步骤如下所示。工业上,LFP 主要采用单级热工艺生产,该工艺分为研磨和煅烧以及最终应用于正极的子工艺。前体可以通过碳酸盐或氢氧化物途径合成。通常会选择更便宜的原材料。LFP 可以使用不同的工艺生产。以下过程作为示例进行解释。
从无机工业废水污水中去除金属和重金属,传统上依赖于凝固和降水。这种方法背后的想法很简单:将溶解的污染物转换为可容易从水中去除的固体颗粒。水电X形成重金属作为氢氧化物的不溶性沉淀物。这是Hydro X所基于的核心概念。Hydro X脱颖而出是最先进的固化技术。羟基自由基在不添加外部催化剂的情况下氧化靶污染物分子。通过将pH调节/调整到强大的基本条件为9.5 - 10。建议自动pH控制。
标题:简化和扩大使用机械化学作者合成的硼咪二唑酯框架(BIF)范围TomislavFriščićA,B * A McGill University的化学系,801 Sherbrooke St. W. H3A 0B8加拿大蒙特利尔。e-邮件:tomislav.friscic@mcgill.ca b frqnt Quebec高级材料中心(QCAM/CQMF),加拿大蒙特利尔,加拿大C CADADIFF大学,加拿大大学,公园大楼,加迪夫CF10 3AT公园广场,英国d,英国d,d pasciff cf10 3at,d pastef,d cf10 d。e Concordia大学生物化学与化学系,7141 Sherbrooke St. W. H4B 1R6加拿大蒙特利尔。 f国际纳米技术研究所,化学系西北大学,2145 Sheridan Road,60208 Sheridan Road,60208 Evanston,伊利诺伊州,伊利诺伊州,伊利诺伊州伊利诺伊州,主要文本机械化学1-7,已成为一种多功能方法,用于合成和高级材料的合成和材料,包括Nananoparticle Systems 8-10和金属eRebressing(包括金属型号)(包括金属型号)(Mofs-Er-Organigics)(Mofs-Erganigy),使用常规的基于解决方案的技术获得。 16–18的机械化学技术,例如球铣削,双螺钉挤出19和声学混合20,21,简化和先进了多种MOF范围的合成,允许使用简单的起始材料,例如金属氧化物,氢氧化物或碳酸盐或碳酸盐,氢氧化物或碳酸盐,在房间温度和较高的表面上,较高的表面上的较高的表面,均等的,均质的稳定性,均可稳定地及其稳定,并稳定地,稳定性,稳定性,稳定性,并稳定地及其稳定性,并在稳定的稳定性,并且稳定的范围是稳定的。同行。e Concordia大学生物化学与化学系,7141 Sherbrooke St. W. H4B 1R6加拿大蒙特利尔。f国际纳米技术研究所,化学系西北大学,2145 Sheridan Road,60208 Sheridan Road,60208 Evanston,伊利诺伊州,伊利诺伊州,伊利诺伊州伊利诺伊州,主要文本机械化学1-7,已成为一种多功能方法,用于合成和高级材料的合成和材料,包括Nananoparticle Systems 8-10和金属eRebressing(包括金属型号)(包括金属型号)(Mofs-Er-Organigics)(Mofs-Erganigy),使用常规的基于解决方案的技术获得。16–18的机械化学技术,例如球铣削,双螺钉挤出19和声学混合20,21,简化和先进了多种MOF范围的合成,允许使用简单的起始材料,例如金属氧化物,氢氧化物或碳酸盐或碳酸盐,氢氧化物或碳酸盐,在房间温度和较高的表面上,较高的表面上的较高的表面,均等的,均质的稳定性,均可稳定地及其稳定,并稳定地,稳定性,稳定性,稳定性,并稳定地及其稳定性,并在稳定的稳定性,并且稳定的范围是稳定的。同行。24,25机械化学在MOF合成和发现中的优势使我们解决了合成硼咪唑酸盐框架(BIF)的可能性,26一种是一种有趣但不足以开发的微孔材料,类似于Zeolitic imidazaly的框架(Zifs),27-29 – 27-29 – 29 – 29 – 29 – 29 – 29 – 29-硼(III)和单价Li +或Cu +阳离子作为节点。尽管BIFS提供了一个有吸引力的机会来访问分子量较低的微孔MOF,尤其是在基于Li+和B(III)中心的“超轻”系统的情况下,这种材料家族在很大程度上尚未探索 - 可能是由于需要在n -butylithium中使用溶液中的溶液环境,因此需要进行严格的综合条件。29现在,我们展示如何切换到机械化学环境使锂和铜(i)基于铜(i)的BIF迅速制备(即,一个小时或更短的时间),没有升高的温度或散装溶剂,以及易于获得的固体反应物,例如氢氧化物和氧化物。虽然机械化学准备的BIF表现出明显高的表面积面积,而机械化学则可以将这种类别的材料扩展到以前未报告的Ag +节点。与基于li +或Cu +的bifs同源性引入,但包括Ag +离子,可以对其稳定性进行定期密度功能功能理论(DFT)评估。这表明,随着四面体节点的稳定性(SODALITE拓扑结构(SOD)开放BIF相对于封闭式包装的Diaondoid(DIA)拓扑多形状,改善了较重的元素。
通过将聚合物掺入LDH纳米粒子中,可以获得具有独特功能和结构的聚合物基纳米复合膜,其可以通过逐层自组装方法定义为溶液插层、熔融插层或乳液插层(12,13)。在药物输送领域,无机材料的使用可能会产生有害的副产物并影响环境。相反,使用天然物质和绿色合成方法可以最大限度地减少能源消耗和污染物的产生,并改善人类健康(14,15)。因此,结构上由几种有机大分子(如碳水化合物、蛋白质、核酸和脂肪酸)组成的天然物质(如蜂蜜)引起了人们的兴趣(16,17)。天然基纳米复合材料通常被认为是无毒和生物相容性的,具有高化学稳定性和pH依赖性的溶解度(12,18)。它们通过廉价的工艺制备而成,并且可以轻松修改为具有独特的物理化学性质,以用于环境科学、催化、生物传感、化妆品和医学等不同应用(10、19)。尽管转换为生物来源可能会解决许多重大问题,但活性成分在储存过程中可能通过水解或氧化而快速降解,并且由于释放曲线受限导致治疗反应不足,因此凸显了使用生物来源的必要性
磁铁矿包覆的镁铝层状双氢氧化物基聚乙烯醇对制备核壳纳米粒子作为药物输送剂的影响。Int.J. Mol.Sci.2019, 20 (15), 3764; (IF 6.208) 24.Bullo Saifullah , Kalaivani Buskaran, Rabia Baby Shaikhet al. 使用氧化石墨烯-PEG 作为原儿茶酸和绿原酸的纳米载体的双药抗癌纳米制剂。Pharm Res (springer) (2019) 36:91。(IF 4.2)。25.Bullo Saifullah、Kalaivani Buskaran、Rabia Baby Shaikhet 等人。氧化石墨烯-PEG-原儿茶酸