地热能(地热)用作地热发电厂(PLTP)的可再生能源之一,可以在存在H 2 S.气体检测H 2 S气体的情况下通过吸附活性碳表面修饰来实现,从而增加了作为吸附剂的能力。这项研究旨在用碱金属实施活性碳椰子壳,即KOH,表征了活化的碳并测试了H 2 S.气体检测的性能。基督教,形态和化学成分之后,通过反应堆方法和种植方法进行吸附性能测试。KOH浸渍15%的碳的结果降低了表面积并改变毛孔的性能,降低粒径,稳定的热性能低于580℃的温度,改变表面形态和孔隙度以及K元素的含量以及K元素的含量也具有晶体馏分的晶体,也出现了2θ:21.85⁰和24.28.28.28.28.28.28.28.28.28.28.28.28.28⁰。主动碳吸附浸渍的效率(KAI)比活化碳(KA)高3倍(KA),因此可以用于地热检测。
hafsa bahaar,1 S. Giridhar Reddy,2,* B. Siva Kumar,2,* K. Prashanthi 1和H. C. Ananda Murthy 3摘要摘要是开发了一种新的纳米载体,以解决与癌症治疗相关的衰减副作用,特别是用于送达Sorafenib(SF)(SF)。这种纳米载体利用可生物降解的聚合物,通过实现受控药物释放和降低毒性,它采用了有希望的抗癌症治疗方法。纳米载体的设计包括Fe 3 O 4纳米颗粒,藻酸钠,木质磺酸,聚乙烯乙二醇,SF药物和MGAL层的双氢氧化物涂层。使用各种技术(包括FT-IR,TGA和FESEM)对纳米载体进行了广泛的表征。值得注意的是,与其他变化相比,SF的受控释放中,氧化铁纳米颗粒(IONP)纳米载体具有显着优势。纳米载体组件之间的化学相互作用显着促进其增强的稳定性,如热重分析所证明的那样。此外,XRD分析证实了最终样品的结晶性质。FESEM图像提供了纳米载体组合形态的视觉确认。此外,动力学模型还验证了SF从复合藻酸盐基质中持续释放。这些发现共同强调了该纳米载体系统的潜力,作为在癌症治疗中递送SF药物的有效方法,同时最大程度地减少副作用。
摘要:从全球来看,癌症治疗仍是一个主要问题。随着纳米技术的最新发展,基于层状双氢氧化物 (LDH) 的纳米系统因其 pH 依赖性生物降解性、优异的生物相容性、易于表面改性、阴离子交换容量和高化学稳定性而受到特别关注,为癌症治疗带来了巨大的潜力。通过将无机、有机或生物分子插入其层状晶格中,可以从层状双氢氧化物 (LDH) 开发出具有双重或多功能特征(包括抗癌能力)的新型混合材料。尽管已经发表了出色的研究,但很少有综述论文讨论这些重要且有希望的发现,以刺激基于 LDH 的纳米系统在癌症治疗领域的持续发展。因此,本文研究重点关注基于 LDH 的化疗纳米系统在癌症治疗方面的最新进展。本综述中使用的信息来自之前发表的研究,并从多个期刊渠道检索而来。这些报告讨论了基于层状双氢氧化物的化疗纳米系统在癌症治疗中的应用。研究表明,层状双氢氧化物可用于开发单一或复合纳米系统,以精确分配治疗成分,而不会对纳米医学领域造成累积损害。 DOI:https://dx.doi.org/10.4314/jasem.v27i4.24 开放获取政策:JASEM 发表的所有文章均为 AJOL 支持的 PKP 下的开放获取文章。文章发表后立即在全球范围内提供。无需特殊许可即可重新使用 JASEM 发表的文章的全部或部分内容,包括图版、图表和表格。版权政策:© 2022 作者。本文是根据知识共享署名 4.0 国际 (CC-BY-4.0) 许可条款和条件分发的开放获取文章。只要明确引用原始文章,即可在未经许可的情况下重新使用文章的任何部分。引用本文为:OMONMHENLE,S. I;IFIJEN,IH (2023)。基于层状双氢氧化物的化疗纳米系统在癌症治疗中的进展。应用科学杂志。环境。管理。27 (4) 815-821 日期:收到日期:2023 年 2 月 7 日;修订日期:2023 年 3 月 18 日;接受日期:2023 年 3 月 28 日出版日期:2023 年 3 月 31 日关键词:层状双氢氧化物;纳米系统;癌症治疗;耐药性由于定制或靶向治疗等替代疗法的出现,癌症的治疗方法已经发展(Maliki 等人,2022 年;Ifijen 等人,2022 年),但它们仍然有很多缺点。光疗法(Ifijen et al., 2023a; Ifijen et al., 2023b)由于其高度选择性,是最有前景的治疗方法之一,可相对容易地用于治疗甚至深层癌症,例如肝肿瘤。光疗中使用的两种主要治疗方法是光热疗法 (PTT) (Zhong et al ., 2021) 和光动力疗法 (PDT) (Perni et al ., 2021),后者利用光产生治疗性活性氧 (ROS) (Algorri et al ., 2021)。这些治疗方法通常用于增加总
摘要:随着半导体行业在过去几十年的迅猛发展,其对环境的影响也日益令人担忧,包括淡水的抽取和有害废水的产生。四甲基氢氧化铵 (TMAH) 是半导体废水中不可避免的有毒化合物之一,应在废水排放前去除。然而,很少有经济实惠的技术可以去除半导体废水中的 TMAH。因此,本研究的目的是比较不同的处理方案,如膜电容去离子 (MCDI)、反渗透 (RO) 和纳滤 (NF),用于处理含有 TMAH 的半导体废水。进行了一系列台式实验装置,以研究 TMAH、TDS 和 TOC 的去除效率。结果证实,MCDI 工艺和 RO 一样表现出很强的去除能力,而 NF 在相同的恢复条件下无法充分去除。 MCDI 对包括 TMA+ 在内的一价离子的去除率高于二价离子。此外,在碱性溶液中,MCDI 对 TMA+ 的去除率高于在中性和酸性条件下的去除率。这些结果首次证明了 MCDI 在处理含有 TMAH 的半导体废水方面具有巨大潜力。
氧化亚铜(CuOH)是一类重要的金属化合物,包括硫族化物[5,6]、卤化物[7,8]和一些复杂的盐(例如 Chevreul 盐)[9],它们在催化[10,11]、传感[12,13]、能量转换[14,15]和光学[16]等领域有着广泛的应用。其中,氧化亚铜(CuOH)长期以来一直受到人们的广泛关注。[17,18] 早在 20 世纪初,Miller 和 Gillett 就观察到在低温下(低于 60 °C)用铜工作电极电解 NaCl 溶液时,会产生黄色的 CuOH 沉淀。[19,20] 随后,人们进行了多项研究,探究通过各种方法合成的 CuOH 的特征结构和性能。 [21–23] 然而,在早期的研究中,CuOH 大多以块状固体形式存在,结构为亚稳态,由于缺乏适当的保护以防止氧化和/或脱水,当暴露于环境或热处理时,淡黄色沉淀物会迅速变为深红色,表明形成了 Cu 2 O。这种结构不稳定性使研究所得 CuOH 的性质和应用变得困难。2012 年,Korzhavyi 等人 [24] 进行了理论研究,证明 CuOH 可以以固体形式存在;然而亚稳态导致形成各种晶体结构构型的随机混合物,例如 Cu 2 O 和冰 VII H 2 O。Soroka
LDHs作为一种具有特殊层状结构的无机功能纳米材料,具有价格低廉、生物相容性好、热稳定性好、比表面积大、内部结构可调、可替换插层阴离子、高的阴离子交换容量等特点。[5]因此,LDHs在催化、[6]吸附分离、[7]药物控制释放、[8]阻燃[9]和聚合物改性[10]等领域得到了广泛的研究和应用。LDHs最吸引人且最重要的特性是其层间阴离子是可交换的,即各种有机阴离子、无机阴离子、聚合阴离子和药物分子可以插层到LDHs的层间以赋予不同的功能。[11]基于LDHs可替换插层阴离子的特点,近年来LDHs应用最广泛的两个领域是药物载体[2]和污水处理。 [12] 作为药物递送载体,可以将药物分子插入到LDHs中,增强其溶解性、扩散性能、热稳定性,实现可控的释放速率,且不会对人体产生不良影响。[13] 同时,由于LDHs具有环境友好性和独特的阴离子交换性,作为去除废水中污染物的吸附剂也被广泛研究。[14]
氧析出反应 (OER) 是所有使用水作为氢源的反应(如氢析出和电化学 CO 2 还原)的关键元素,而提供 OER 电催化剂上高活性位点的新型设计原理突破了它们实际应用的极限。本文证明了金簇负载在单层剥离层状双氢氧化物 (ULDH) 电催化剂上用于 OER 以在金簇和 ULDH 之间制造异质界面作为活性位点,同时伴随着活性位点氧化态的调节和界面直接 O O 偶联(“界面 DOOC”)。负载金簇的 ULDH 对 OER 表现出优异的活性,在 10 mA cm −2 时的过电位为 189 mV。 X射线吸收精细结构测量表明,从金团簇到超低分子量聚乙烯的电荷转移改变了三价金属离子的氧化态,而这些离子可以作为超低分子量聚乙烯上的活性位点。本研究采用高灵敏度的反射吸收红外光谱和调制激发光谱以及密度泛函理论计算相结合的光谱技术,表明金团簇和超低分子量聚乙烯界面处的活性位点通过界面DOOC促进了一种新的OER机制,从而实现了优异的催化性能。
由于其高功率密度、环境友好、卓越的充放电能力、长循环寿命和安全性,纳米材料成为最有希望的储能候选材料之一。[4,5] 将纳米材料加工成具有高电导率和良好机械稳定性的独立薄膜对超级电容器具有重要意义。要为高性能超级电容器选择合适的纳米材料,必须考虑卓越的表面特性、固有的高强度和电导率。[6,7] 在寻找能够提供所有这些特性的替代品的过程中,最近发现的二维材料 MXene 显示出巨大的潜力。MXenes 是二维家族中的一种新型候选材料(MXenes 描述为 M n + 1 X n T x ,其中 M、X 和 T x 通常代表早期过渡金属、C 或 N,以及吸附的表面功能团如 OH、 O 和 F,其中 n = 1、2 或 3)。 [8] 2D 过渡金属碳化物和氮化物 MXene(包括 Ti3C2Tx、Mo2CTx 和 V4C3Tx)具有高金属电导率、优异的循环稳定性和丰富的表面化学基团,是超级电容器的优良电极材料。[9] 通过真空辅助过滤制备 MXene 独立膜是实现这些特性的最佳选择。[10] 例如,卷曲的 Ti3C2Tx 薄膜表现出 150 000 S m−1 的高电导率和重量电容
牙髓治疗的目的是预防和控制纸浆和周围感染。氢氧化钙具有有益的生物学特性作为一种植物内药物,并且可以与Cresotin合并以在根管中对细菌进行消毒,尤其是粪肠球菌(E. faecalis),这是根管中最常见的菌株。这项研究的目的是在体外研究氢氧化钙,氯三氧化钙和氢氧化钙和克雷索蛋白钙的抗菌活性(Ca [OH] 2 +cresotin,1:1和1:1),对粪肠球菌。抗菌活性通过琼脂扩散法确定。测试药物被放置在接种琼脂培养基中制造的孔中。在每个板中孵育后测量并记录了生长抑制区,并用ANOVA对结果进行统计分析。联合氢氧化钙和氯三氧化钙的体外抗菌作用(Ca [OH] 2 +cresotin,1:2)的抗菌活性比其他抗菌活性更为突出,氢氧化钙比单独的Cresotin更有效。与其他治疗相比,氢氧化钙和曲霉素联合的抗菌活性更有效地杀死粪肠球菌。