1 Precision制造中心,DMEM,Strathclyde大学,格拉斯哥,英国w.xie@strath.ac.uk摘要摘要实现了对氧化增长的精确控制已成为局部阳极氧化(LAO)纳米术的质量控制的关键瓶颈,这是由于缺乏有效的流程监测和反馈控制方法而导致的纳米术。在这种情况下,本文提出并提出了一种现场检测方法,使用高度耐用的导电钻石涂层探针在老挝过程中实时监测氧化生长的状态。研究结果表明,使用钻石涂层的探针可以在微型水平上诱导具有瞬态电流的可控老挝,并创建高度超过18 nm的纳米结构,这尤其优于使用掺杂的硅探针获得的纳米结构。还证明,在一定的电压范围内,检测到的电流可以反映纳米碱制造过程中氧化的生长,检测到的电流与氧化表面的电导率相关,表明氧化程度。可以预期,与柔性脉冲调制的组合将有助于一种柔性,简单的方法来调整氧化生长,为生产高质量的氧化物线铺平道路。原子力显微镜,监测,纳米制造,氧化
血管生成素样 4 (ANGPTL4) 是一种参与脂蛋白代谢的关键蛋白质,具有多种作用。Angptl4 与糖尿病肾病之间存在关联;然而,这种关联尚未得到充分研究。我们发现足细胞和小管特异性 ANGPTL4 都是糖尿病中至关重要的纤维化分子。糖尿病会加速对照小鼠的纤维化表型,但不会加速 ANGPTL4 突变小鼠的纤维化表型。在 ANGPTL4 突变小鼠中观察到的保护作用与干扰素基因通路激活刺激因子的减少、促炎细胞因子的表达、上皮-间质转化和内皮-间质转化的减少、线粒体损伤的减少以及脂肪酸氧化的增加有关。从机制上讲,我们证明足细胞或小管分泌的 Angptl4 与整合素 β 1 相互作用并影响二肽基-4 与整合素 β 1 之间的关联。我们证明了靶向药物疗法的效用,该疗法可特异性抑制肾脏中的 Angptl4 基因表达并保护糖尿病肾脏免受蛋白尿和纤维化的影响。总之,这些数据表明足细胞和小管衍生的 Angptl4 在糖尿病肾脏中具有纤维化作用。
本文报道了高表面积活化还原氧化石墨烯 (arGO) 的制备方法,该氧化石墨烯被氧化成富含缺陷的 GO (dGO) 的 3D 类似物。arGO 的表面氧化导致碳氧比 C/O = 3.3,类似于氧化石墨烯的氧化状态,同时保持约 880 m 2 g −1 的高 BET 表面积。表面氧化 arGO 的分析表明,氧官能团含量高,可将疏水前体转化为亲水材料。高表面积碳为氧化提供了整个表面,而无需插层和晶格膨胀。因此,表面氧化方法足以将材料转化为具有与氧化石墨烯相似化学性质的 3D 结构。“3D 氧化石墨烯”在极宽的 pH 区间内表现出对 U(VI) 去除的高吸附能力。值得注意的是,表面氧化的碳材料具有刚性的三维结构,微孔可供放射性核素离子穿透。因此,块状“3D GO”可直接用作吸附剂,而无需分散,这是 GO 使其表面积可供污染物进入的必要步骤。
摘要:氧化锆(ZRO 2)是一种良好且有前途的材料,由于其出色的化学和物理特性。在用于腐蚀保护层,磨损和氧化的涂料中,在光学应用(镜像,滤波器)中用于装饰组件,用于反伪造的解决方案和医疗应用。ZRO 2可以使用不同的沉积方法(例如物理蒸气沉积(PVD)或化学蒸气沉积(CVD))作为薄膜获得。这些技术是掌握的,但由于固有特性(高熔点,机械和耐化学性),它们不允许对这些涂层进行微纳米结构。本文描述的一种替代方法是Sol-Gel方法,该方法允许使用光学或纳米图形印刷术的无物理或化学蚀刻过程的ZRO 2层进行直接微纳米结构。在本文中,作者提出了一种完整且合适的ZRO 2 SOL-GEL方法,允许通过光学或纳米IMPRINT光刻来实现复杂的微纳米结构,以实现不同性质和形状的基材(尤其是非平面和箔材料的底物)。通过掩盖,胶体光刻和玻璃和塑料底物以及平面和弯曲的底物,通过掩盖,胶体光刻和纳米图光刻来呈现ZRO 2 Sol-Gel的合成以及微纳米结构过程。
Indrajit Chakraborty, 1 Zhanhu Guo, 2 Anirban Bandyopadhyay 3 和 Pathik Sahoo 3, 4, 5* 摘要 在为特定特征设计材料时,除了考虑化学能力之外,考虑物理尺寸变得越来越重要。材料的物理尺寸、光学特性、表面积和机械特性都在决定其光化学能力方面发挥作用。在二维 (2D) 材料中,光电效应的表面积和光化学反应中均匀电荷分布的长距离电导率达到完美平衡。迄今为止,已经研究了各种各样的 2D 材料:低成本、稳定、地球资源丰富且无危害。然而,必须提高光催化剂的效率以满足现代社会日益增长的绿色能源需求。光催化剂特别感兴趣的是将太阳能储存在化学键中以提供长期能量。各个领域的研究人员最近都做出了贡献,包括适当地在空间中排列光催化反应中心、通过修改物理结构和化学功能来调整带隙、使用机器学习协议以及在制备催化剂之前计算密度泛函理论 (DFT)。本综述将介绍修改二维材料的最新贡献,以将开发用于水氧化的光催化剂的集体努力联系起来。此外,在结论部分,我们将强调正在进行的工作的视角、挑战和维度。
摘要:在当前的研究中,研究了富含12%(w / w)原蛋白的创新功能意大利面的益生元潜力。为此,与对照面食(CTRL)相比,面食经过体外胃肠道消化,然后进行模拟肠道发酵。浓度融合了浓度(p <0.05),影响了一些有机特性和最终产物的烹饪质量,总体得分显着高于CTRL。在两个面食样品中,所得的必需氨基酸含量相似,而富含氧化的面食的总蛋白质含量较低,用于聚合物替换到螺母小麦的聚合物。使用七种益生菌菌株在体外实验中初步测试了菊苣蛋白的益生元潜能,其中选择了乳酸酶乳杆菌IMPC2.1进行模拟肠道发酵研究。用益生菌菌株注册的阳性益生元活性评分表明,富含蛋白质的意大利面对于充当益生元来源的适合性,有利于益生菌菌株和短链脂肪酸(SCFA)产生的生长。本研究有助于扩大对含糖蛋白的益生元效应的知识,并纳入复杂的食物基质中。
摘要:氧化还原的非处以配体与金属前体反应形成复合物,其中配体的氧化态和金属原子无法轻易定义。这是此类Lig-和s的一个众所周知的例子是BI(O-氨基酚)N,N'-BIS(3,5-二 - tert丁基-2-羟基 - 羟基苯基)-1,2-苯基二酰胺,以前是由WieghardT组开发的,它允许具有四个不同的蛋白质态态和四个不同的蛋白质均匀态,并且具有四个不同的蛋白酶元素,并且具有四个不同的蛋白酶元素,并具有四个不同的蛋白酶元素,并具有四个独特的蛋白酶元素,并具有四个不同的蛋白酶。国家。 这种丰富的氧化还原化学以及与各种过渡金属协调的能力,已用于具有M 2 L,ML和ML 2 stoichiomerties的金属配合物的合成中,有时还由其他配体支持。 配体的不同氧化态可以采用不同的配位模式。 例如,以完全氧化的形式,两个N捐赠者被SP 2杂交,这使配体平面使得,而在完全还原的形式中,SP 3杂交N供体允许形成更柔软的螯合物结构。 通常,在络合过程中可以减少金属,但是分离的复合物的氧化还原过程通常出现在配体上。 这种非一种中心配体与氧化还原活性过渡金属的组合可能会导致具有有趣的磁性,电化学,光子和催化特性的复合物。这是此类Lig-和s的一个众所周知的例子是BI(O-氨基酚)N,N'-BIS(3,5-二 - tert丁基-2-羟基 - 羟基苯基)-1,2-苯基二酰胺,以前是由WieghardT组开发的,它允许具有四个不同的蛋白质态态和四个不同的蛋白质均匀态,并且具有四个不同的蛋白酶元素,并且具有四个不同的蛋白酶元素,并具有四个不同的蛋白酶元素,并具有四个独特的蛋白酶元素,并具有四个不同的蛋白酶。国家。这种丰富的氧化还原化学以及与各种过渡金属协调的能力,已用于具有M 2 L,ML和ML 2 stoichiomerties的金属配合物的合成中,有时还由其他配体支持。配体的不同氧化态可以采用不同的配位模式。例如,以完全氧化的形式,两个N捐赠者被SP 2杂交,这使配体平面使得,而在完全还原的形式中,SP 3杂交N供体允许形成更柔软的螯合物结构。通常,在络合过程中可以减少金属,但是分离的复合物的氧化还原过程通常出现在配体上。这种非一种中心配体与氧化还原活性过渡金属的组合可能会导致具有有趣的磁性,电化学,光子和催化特性的复合物。
O-1主动脉函数的措施独立预测女性患有胸动脉动脉瘤的女性不良事件rebecca crosier,医学博士,心脏病学居民,UOHI主管:Thais coutinho,MD O-2 O-2北欧步行,高强度的疾病训练,并在疾病中进行了疾病的疾病,并在疾病中进行了疾病,并在高度训练中训练了强度的训练。 Marçal,博士候选人,UOHI主管:Jennifer Reed,PhD O-3普通药物 - 罕见疾病 - 二甲双胍可以改善PAI-1缺乏小鼠的心脏功能吗?Serena pulente,PhD候选人,UOHI主管:PCSK9的Erin Mulvihill,PCSK9的PhD O-4 Furin蛋白水解改善了其与氧化的LDL和细胞表面受体CD36和LOX1的相互作用。ikhuosho asikhia,博士候选人,UOHI主管:托马斯·拉格斯(Thomas Lagace),博士O-5 Wnt5a在Rat Hearts&Human IPSC衍生的心肌细胞中具有心律失常持续且永久性心房颤动Tasuku Terada,博士,博士后研究员,UOHI主管的患者对心肺适应性的持续强度持续训练:Jennifer Reed,PhD
尽管有机阴极材料场迅速扩张,但仍然缺乏通过易于合成的材料,具有稳定的循环和高能量密度。在此,我们报告了可以用作阴极材料的市售前体中的小有机分子的两步合成。氧化的四喹氧化物毒素(OTQC)是通过将附加的奎诺酮氧化氧化氧化氧化氧化氧化氧化氢活性中心引入结构中的四喹啉氧化菌(TQC)衍生而来的。修饰增加了材料的电压和容量。OTQC的高特异性容量为327 MAHG -1,平均电压为2.63 V,而Li -Ion电池中的Li/Li +。对应于材料水平上860 WHKG -1的能量密度。此外,该材料表现出极好的循环稳定性,在400个循环后的容量保持量为82%。同样,使用水解物中的TQC与TQC相比,OTQC表现出增加的平均电压和特异性能力,达到326 MAHG -1的特异性容量,平均电压为0.86 V,Vs. Zn/Zn 2+。除了良好的电化学性能外,这项工作还对与容量衰减有关的氧化还原机制和降解机制提供了额外的深入分析。
Figure 5 (Color online) (a) CLSM images of HepG-2 cells after incubation with TBPCP and TBCP (5 μM) under hypoxic conditions and two-photon irradiation (940 nm, 50 mW, 2 min) followed by staining with C11-BODIPY 581/591, Hoechst 33342, and Fer-1.对于C11-Bodipy 581/591:λEX= 561 nm; λEM= 570–620 nm。用于氧化的C11-Bodipy 581/591,λEX= 488 nm,λem= 500–530 nm。比例尺:10μm。(b)在深色和白光照射下用TBPCP和TBCP(5μM)处理的HEPG-2细胞的GSH水平(400-700 nm,200 mW/cm 2,10 min)。(c)在不同TBPCP处理的条件下,HEPG-2细胞中GPX4表达和GPX4的相对表达的蛋白质印迹分析。(d)在不同TBCP处理的条件下,HEPG-2细胞中GPX4表达和GPX4的相对表达的蛋白质印迹分析。误差线代表平均值±SD(每组n = 3), * p <0.05,** p <0.01,*** p <0.001。(e)TBPCP和TBCP处理的线粒体和核形态的生物-TEM(5μM)HEPG-2细胞在不同的处理后,比例尺:500 nm:500 nm。