非酒精性脂肪肝疾病(NAFLD)和2型糖尿病是肥胖的合并症,并增加了由高胰岛素血症和碳水化合物超负荷的肝脏脂肪生成(DNL),从而有助于其发病率。脂肪酸合酶(FASN)是肝DNL的关键酶,与胰岛素抵抗相关。然而,靶向FASN在肝细胞中针对肥胖相关的代谢疾病的治疗潜力尚不清楚。在这里,我们表明,肝FASN缺乏症会根据肥胖病学的病因差异地影响NAFLD和糖尿病。黑色素皮质素4受体缺陷小鼠的FASN的肝细胞特异性消融改善了NAFLD和糖尿病,但在饮食诱导的肥胖症的小鼠中却没有。在瘦素缺乏小鼠中,FASN消融减轻了肝脂肪变性并提高了葡萄糖耐受性,但加剧了喂养的高血糖和肝功能障碍。肝FASN缺乏对NAFLD和葡萄糖代谢的有益作用分别与DNL的抑制和糖异生和脂肪酸氧化的衰减有关。美联储的加剧
公猪精子的膜富含多不饱和脂肪酸,使其特别容易受到氧诱导的脂质过氧化的影响[4]。野猪精子在冷冻保存过程中经历了冷休克,这导致有害细胞的改变主要是由于活性氧(ROS)水平升高,其中包括超氧化物阴离子,羟基自由基和过氧化氢。这些ROS是在还原氧的中间阶段产生的,可能会损害DNA,质膜脂质和细胞蛋白[5]。尽管低和控制的ROS水平对于精子功能(例如过度激活,电容,Adrosom反应和Zona结合)至关重要,但过量的ROS产生会损害精子的适应能力,从而导致氧化应激和细胞损伤[6]。因此,解冻的精子可能在核蛋白-DNA中表现出结构性变化,并且类似于电容的变化,从而显着降低了其施肥能力[7]。为减轻氧化损伤,在冷冻和解冻过程中使用酶和非酶抗氧化剂增强精液扩展器是一种方法[8]。
摘要:近年来,除了使用激光器的定向能量沉积的基于众所周知的电线过程外,使用电子束的过程变体也已发展为工业市场成熟度。该过程变体为处理高导电性,反射性或容易氧化的材料提供了特别的潜力。但是,对于工业用法,缺乏有关绩效,限制和可能应用的全面数据。本研究使用高强度铝制青铜Cual8ni6的示例弥合了差距。多阶段测试焊缝用于确定该过程的局限性,并得出有关加成制造参数的适用性的结论。为此,研究了能源输入,可能的焊接速度和过程可扩展性的最佳范围。最后,产生了圆柱体和壁的形式的添加剂测试样品,并研究了硬度效果,微观结构和机械性能。发现可以使用电线电子束添加剂制造对材料Cual8ni6进行很好的处理。微观结构类似于铸造结构,标本高度上的硬度为恒定是恒定的,而断裂值的拉伸强度和伸长率达到了原材料的规范。
金属空气电池是一种有希望的储能解决方案,但是材料的限制(例如金属钝化,低活性材料利用率)阻碍了其采用。我们研究了一个固体燃料流量电池(SFFB)结构,该体系结合了金属空气电池的能量密度与氧化还原流量电池的模块化。具体而言,金属固体电化学燃料(SEF)在空间上与阳极电流收集器分离。两者之间溶解的氧化还原介体穿梭电荷,氧气还原阴极完成了电路。这种修饰会解除功率和能量系统组件,同时实现机械可再核能并降低非均匀金属氧化的影响。我们进行了一项探索性研究,表明金属SEF可以重复降低有机氧化还原介质。随后,我们为CA操作了概念验证的SFFB单元。25天作为技术可行性的初步证明。总的来说,这项工作说明了这种存储概念的潜力,并突出了改进的科学和工程途径。目录图像:
摘要。至关重要的是要了解哪些电势分解反应开始以及随后形成的分解膜中存在哪些化学物质,例如固体电解质相(SEI)。在此,引入了一种新的Operando实验方法,以通过使用硬X射线光电子光谱(HAXPES)来研究此类反应。这种方法可以检查在薄金属膜下方形成的SEI(例如6 nm镍),该膜在具有硫化物的基于硫化物的LI 6 PS 5 Cl固体电解质的电化学电池中充当工作电极。电解质还原反应已经开始为1.75 V(vs。li + /li)并导致相当大的li 2 s形成,尤其是在1.5 - 1.0 V的电压范围内。观察到SEI的异质 /分层微结构(例如,优先的Li 2 O和Li 2 O和Li 2 S在当前收集器附近)。还观察到了侧反应的可逆性,因为在2-4 V电势窗口中分解了Li 2 O和Li 2 S,产生了氧化的硫种类,亚硫酸盐和硫酸盐。
摘要:我们使用环境异常校正的电子显微镜在一系列氧气压力的氧化气环境中,在氧化气环境中能量电子在氧化气环境中的影响下,在氧化气环境中能量电子在氧化气环境中的损伤阈值和途径上提出了前所未有的结果。我们观察到损伤的级联反应,该过程抵抗损害,直到与碳纳米管相比,较高的电子剂量,启动了无缺陷的BNNT侧壁,并通过从结晶纳米管转换为从结晶纳米管转换为无定形的硼氮化物(bn),均可抵抗氧化。我们将碳纳米管氧化的先前结果进行比较,并提出了将两种情况下损害发作的模型归因于物理氧气层,从而降低了损害发作的阈值。出乎意料的是,升高的温度可提供防止损害的保护,电子剂量率显着超过了氧剂量率,而我们的模型将两种影响都归因于物理氧气人群。
图S1。 通过正弦脉冲类似阳极氧化的NaA – GIF制造。 a)代表性的全输入正弦电流密度曲线(黑色实线)和代表性的全输出正弦电压曲线(红色实线)。 初始部分中电压曲线向更高的电压值的轻微偏差与纳米孔的不均匀生长有关,从光滑的表面开始。 b) Magnified view (down left in blue dash line) of one period at the beginning of the electrochemical process with graphical definition of input anodization parameters: J max – current density amplitude, J average – current density average, T – anodization period and the output parameters in voltage profile: V average – average voltage during the anodization process, V max – output voltage amplitude. 当输入阳极氧化电流发生变化时,由于电流恢复过程缓慢而导致的输入电流密度曲线和电压轮廓之间存在时间延迟; c)放大了代表性输入和输出正弦电流密度和电压曲线(在黄色仪表线中向下),其图形定义是在制造电化学过程结束时参数的图形定义。图S1。通过正弦脉冲类似阳极氧化的NaA – GIF制造。a)代表性的全输入正弦电流密度曲线(黑色实线)和代表性的全输出正弦电压曲线(红色实线)。初始部分中电压曲线向更高的电压值的轻微偏差与纳米孔的不均匀生长有关,从光滑的表面开始。b) Magnified view (down left in blue dash line) of one period at the beginning of the electrochemical process with graphical definition of input anodization parameters: J max – current density amplitude, J average – current density average, T – anodization period and the output parameters in voltage profile: V average – average voltage during the anodization process, V max – output voltage amplitude.当输入阳极氧化电流发生变化时,由于电流恢复过程缓慢而导致的输入电流密度曲线和电压轮廓之间存在时间延迟; c)放大了代表性输入和输出正弦电流密度和电压曲线(在黄色仪表线中向下),其图形定义是在制造电化学过程结束时参数的图形定义。
摘要。热处理的过程通常用于食品加工中,以改善微生物的颜色,风味,营养和安全性,同时也降低了有毒化学风险的潜力。但是,研究人员已经确定了与食品加热过程中发生的食品中Maillard反应有关的潜在风险。Maillard的反应分为三个阶段:初始阶段(例如在牛奶和UHT牛奶中),中级阶段(如啤酒和面包店中的产品)和高级阶段(如在啤酒,咖啡,咖啡和巧克力中所示)。Maillard反应受物理变量(例如温度和治疗时间)和化学变量(包括pH,水活动和物质)的影响。丙烯酰胺是在Maillard反应过程中可以形成的有毒化学风险之一。通过涉及天冬酰胺和羰基的主要途径,会导致N-甘油羟基 - 天冬酰胺的形成。此外,也可以通过氧化的丙烯醛和脂质氧化形成丙烯酰胺。本评论文章使用了在线搜索引擎,例如ScienceDirect,Google和ResearchGate作为文献研究方法。
肥胖是一个日益增长的公共卫生问题,其流行率在过去的五十年中已经增加了两倍。已经表明,肥胖与心脏能量代谢的改变有关,这反过来又在心力衰竭发育中起着重要作用。在肥胖期间,心脏高度依赖于脂肪酸氧化作为其主要能源(ATP),而葡萄糖氧化的贡献显着降低。这种代谢不足与降低心脏效率和收缩功能障碍有关。尽管众所周知,肥胖期间心脏能量代谢的改变与心力衰竭发育的风险有关,但控制这些代谢变化的分子机制尚不完全了解。最近,已证明代谢酶的翻译后蛋白质修饰在肥胖症中观察到的心脏能量代谢变化中起着至关重要的作用。了解这些新型机制对于开发新的治疗选择以治疗或预防肥胖个体的心脏代谢改变和功能障碍很重要。本综述讨论了肥胖期间翻译后的乙酰化变化及其在肥胖期间介导心脏能量代谢扰动及其治疗潜力中的作用。
所研究的设备包含平面JJS,由厚度为70 nm的NB膜制成。该胶片是通过在氧化的Si晶片上在室温下在室温下溅射沉积的。首先通过光刻和活性离子蚀刻将薄膜构成约6 µm宽的桥梁,然后由Ga+聚焦离子束(FIB)FEI NOVA 200。JJS具有可变的厚度桥结构。它们是通过通过fib在NB层中切一个狭窄的凹槽而制成的。单线切割,名义宽度为零,在10 pA和30/10 kV加速电压下进行。蚀刻时间是自动限制的。“长” JJ2是使用30 kV梁制成的,其斑点尺寸约为7 nm,而“短” JJ1是用10 kV fib制成的,其斑点大小约为两倍。由于NB的重新沉积,FIB切割的深度在纵横比(深度/宽度)〜2处是自限制(请参阅参考文献中的讨论[1])。结果,JJ1既比JJ2更宽又深,如图3(a),导致临界电流的相应差异。