摘要 简介:由于药物的副作用,纳米级药物递送系统的发展带来了药物治疗的显著改善,因为药物的药代动力学发生了变化,毒性降低,药物的半衰期增加。本研究旨在合成载有他莫昔芬 (TMX) 的 L-赖氨酸包覆磁性氧化铁纳米粒子作为纳米载体,以研究其对 MCF-7 癌细胞的细胞毒性和抗癌特性。方法:合成磁性 Fe 3 O 4 纳米粒子并用 L-赖氨酸 (F-Lys NPs) 包覆。然后,将 TMX 负载到这些 NP 上。通过 X 射线衍射 (XRD)、傅里叶变换红外光谱 (FTIR)、扫描电子显微镜 (SEM)、透射电子显微镜 (TEM)、动态光散射 (DLS)、差示扫描量热法 (DSC)、振动样品磁强计 (VSM) 和热重分析 (TGA) 评估合成纳米粒子 (F-Lys-TMX NPs) 的特性。在 pH 5.8 和 pH 7.4 下分析药物释放。将 MCF-7 细胞暴露于 F-Lys-TMX NPs、F-Lys NPs 和 TMX 24、48 和 72 小时。为了评估设计的纳米粒子的细胞毒潜力,进行了 MTT 和细胞凋亡测定、实时 PCR 和细胞周期分析。结果:F-Lys-TMX NPs 具有球形形态,尺寸范围为 9 至 30 nm。通过增加纳米粒子浓度和处理时间,与 TMX 相比,在 F-Lys-TMX NPs 处理的细胞中观察到更多的细胞增殖抑制和凋亡诱导。ERBB2、细胞周期蛋白 D1 和细胞周期蛋白 E 基因的表达水平下调,而 caspase-3 和 caspase-9 基因的表达水平上调。药物释放研究表明,纳米粒子的释放缓慢且受控,受 pH 依赖。细胞周期分析表明,F-Lys-TMX NPs 可以将细胞停滞在 G0/G1 期。结论:研究结果表明,与 TMX 相比,F-Lys-TMX NPs 更有效,并且具有抑制细胞增殖和诱导凋亡的潜力。因此,F-Lys-TMX NPs 可被视为针对 MCF-7 乳腺癌细胞的抗癌剂。
这是以下文章的同行评审、已接受作者手稿:Kucharczyk, K., Kaczmarek, K., Józefczak, A., Slalchcinski, M., Mackiewicz, A., & Dams- Kozłowska, H. (2021)。通过应用靶向丝/氧化铁复合球对癌细胞进行热疗。材料科学与工程:C , 120 , [111654]。https://doi.org/10.1016/j.msec.2020.111654
材料科学中高级计算机模拟的时代为(纳米 - )材料性能设计了硅计算实验中的巨大潜力。可以通过原子模型和计算机模拟来揭示各种环境中纳米颗粒的吸附效率。砷(AS)是重要的全球分布污染物之一,对人类健康和环境有危险的影响,它可以根据其形状和大小与铁纳米晶体(例如,赤铁矿(Fe 2 O 3))强烈结合。在这里,我们开发了一种新型的动力学蒙特卡洛(KMC)模型,该模型能够探索和描述Fe 2 O 3纳米晶体的形状效率依赖性,并与砷酸盐污染的水接触。这个新设计的模型证明了纳米晶体在其表面上去除有毒(AS)的性能。当前的模型为在不同的环境相关情况(例如地下水,湿地和水处理系统)下,开辟了新的途径,用于设计用于纳米颗粒的进一步高级KMC模型。除了在介绍的模型中实现的双齿吸附复合物外,还应将单次和外部吸附复合物纳入KMC模型。可以通过实现pH和背景离子来解决详细的环境控制。
摘要。胶质母细胞瘤 (GB) 是一种高度侵袭性和浸润性的脑肿瘤,尽管进行了最大限度的安全切除、化疗和放疗,但其预后不良且复发率高。超顺磁性氧化铁纳米粒子 (SPION) 是一种新型工具,可用于许多应用,包括磁靶向、药物输送、基因输送、高温治疗、细胞追踪或多种同时功能。SPION 通过靶向肿瘤细胞蛋白或肿瘤血管,被研究作为磁共振成像肿瘤造影剂。在小鼠模型中,SPION 已将药物输送到 GB 肿瘤。除了靶向肿瘤细胞进行成像或药物输送外,SPION 还被证明可有效靶向高温。除了动物模型外,还对多种不同的 SPION 使用模式进行了人体试验,为进一步的临床前和临床试验提供了重要的发现和经验教训。SPION 为监测和治疗 GB 肿瘤开辟了几种新途径;在这里,我们回顾了当前的研究和各种可能的临床应用。
摘要虽然氧化铁纳米颗粒(IONP)的发展和应用可能会带来暴露风险和不利的健康结果,但由于职业暴露而引起的生物学变化仍未探索。这项横断面研究招募了23名工厂的工人,该工厂生产IONP和23个年龄和性别匹配的对照,而没有金属丰富的职业危害暴露。使用相应的酶 - 连接的免疫吸收测定法和甲基化特异性聚合酶链反应(PCR)分别测量了在工作场所的暴露指标,并测量外周血中的铁状态,氧化标记和基因组DNA的甲基化谱。在制造/处理IONP的工作过程中,工作地点处的空气颗粒的质量浓度,数量计数和表面积浓度显着增加。Overall, com- pared to controls, workers exhibited increased 5-hydroxymethylcytosine (5hmC) levels without changes in 5-methylcytosine (5mC), hepcidin methylation, iron, soluble transferrin receptor (sTfR), ferritin, hepcidin, 8-hydroxydeoxyguanosine, and glutathione.使用部分相关分析(r¼0.521,p <0.001),发现了5HMC和IONP确定的一年之间的正相关,并确保年龄,性别和可替宁调整。在对INOP暴露和5HMC水平分层后,对年龄,性别和可替宁的调整的单变量一般线性模型发现,对照组中低和高5HMC水平的受试者中5MC和STFR的估计平均水平为11%和14.4%和14.4%(P 0.01),以及80.9 nm和80.9 nm和70.3 nm(p <0.05)(p <0.05)。5HMC水平较低的工人和对照中的STFR的估计平均水平为88.3 nm和68.7 nm(p 0.01)。多元线性回归分析表明,STFR和5HMC(标准化的¼0.420,p¼0.014)和女性性别(标准化的女性性别(标准化的¼0.672,p <0.001))对于低5hmc水平的受试者。这些发现表明,增加了5HMC可以差异化来监测具有稳定的铁稳态的表观遗传学特征,这些稳定的IONP暴露的个体可能会早期经历但特定的STFR降低,尤其是对于女性,尤其是与5HMC较低水平的增量相关的女性。
摘要:超顺磁性氧化铁纳米粒子(SPION)是一种独特的纳米材料,具有卓越的磁性和生物相容性,因此最近引起了研究人员的关注。SPION 在诊断、药物输送、生物传感和生物成像等领域有广泛的应用。通过施加外部磁场来控制这些纳米粒子的能力使它们成为如此广泛应用的完美纳米材料。此外,SPION 具有独特的表面化学性质,允许用不同的有机或无机材料进行表面功能化/涂层,从而使其适用于不同的方面。本综述总结了最近提出的用于合成适用于不同应用的 SPION 的方法。此外,本文还讨论了 SPION 的惊人特性。最后,概述了 SPION 的一些最新应用。关键词:SPION;药物输送;磁性纳米粒子;顺磁性材料;表面功能化;功能材料。
研究了生物质与氧化铁的太阳能气化,用于合成气和铁的生产。太阳能和生物质都是很有前途的可再生能源。气化过程将固体碳质原料转化为燃料或化学品。然而,传统工艺需要原料的部分燃烧来供应能量,并且由于燃烧产物的稀释,固有的氧气生产成本高,合成气热值低。使用固体氧化物的化学循环气化是解决这些问题的另一种选择。通过提供集中的太阳能作为高温热源,可以从该过程中生产出更多的合成气,同时能够将太阳能储存成可调度的燃料。这项工作提出探索在高加热速率下在氧化铁上进行太阳能生物质气化,这代表了太阳能反应器中获得的条件。计算了 100 至 1,500 ◦ C 之间气化反应的热力学平衡,并报告了使用专门设计的感应炉在 1,100 ◦ C 下以氧化铁、水或二氧化碳作为氧化剂进行生物质气化的实验结果。固体产物分析表明,氧化铁可以根据氧载体的比例还原为金属铁。这些结果表明,氧化铁是一种有效的太阳能生物质气化材料,可通过一种新颖的绿色冶金工艺同时生产合成气和铁。
nanocat®超细氧化铁(SFIO)是一种比任何其他商业上可用的形式,具有更细粒径和比表面积更大的无定形氧化物。它可以作为化学过程的催化剂,包括合成,破裂和氧化。在固体火箭推进剂中,它提供了高燃烧速率,低压指数和安全性。正确分散,它是紫外线的非常有效的筛选剂。通过独特的蒸汽相过程合成,纳米型SFIO没有毒性毒性的杂质,适合用于食品,药物和化妆品。