(HO)通过在适当的光照射下在肿瘤中获得的光敏剂(PS)的光激发(PS)。3,4 PDT过程可以分为I型和II型,具体取决于PS与其附近的ps触发反应。3,4具体,I型反应涉及氢原子抽象或电子转移,最终导致自由基和过氧化氢的形成(H 2 O 2),而II型II型通过从电子激发的三胞胎PS到地面分子氧的能量转移导致单线氧(1 O 2)的产生。3,4 II型PDT是主要机制,因为大多数PSS是II型。3,4不幸的是,这种对周围氧气的依赖性与肿瘤缺氧的固有特性相矛盾。缺氧是由于快速癌细胞增殖和不规则的血管生成,在实体瘤的微环境中发现了一个显着而重要的特征。5与在大多数健康组织中发现的40-60 mmHg范围相比,肿瘤低氧区域中的氧气通常降至10 mmHg以下。6因此,由于II型PDT高度依赖氧浓度,因此低氧肿瘤
基于脑功能网络 (BFN) 的个体识别近年来吸引了大量的研究兴趣,因为它为身份验证提供了一种新颖的生物特征识别,同时也提供了一种在个体层面探索大脑的可行方法。先前的研究表明,可以通过从功能性磁共振成像、脑电图或脑磁图数据估计出的 BFN 指纹来识别个体。功能性近红外光谱 (fNIRS) 是一种新兴的成像技术,通过测量血氧浓度的变化来对大脑活动做出反应;在本文中,我们研究基于 fNIRS 的 BFN 是否可以用作识别个体的“指纹”。具体而言,首先使用 Pearson 相关性根据预处理的 fNIRS 信号计算 BFN,然后使用最近邻方案匹配不同个体之间估计的 BFN。通过在开放的 fNIRS 数据集上进行实验,我们有两个主要发现:(1)在交叉任务(即休息、右撇子、左撇子手指敲击和脚敲击)的情况下,BFN 指纹通常可以很好地进行个人识别,更有趣的是,(2)交叉任务下的准确率远高于交叉视图(即氧合血红蛋白和脱氧血红蛋白)下的准确率。这些发现表明,基于 fNIRS 的 BFN 指纹是一种潜在的个人识别生物特征。
摘要:层状缺氧钙钛矿氧化物具有优异的混合离子和电子电导率、快速的氧动力学和成本效率,在作为固体氧化物燃料电池的高效阴极和水氧化阳极方面具有巨大潜力。在工作条件下,由于双钙钛矿 (DP) 的形成,阳离子有序化被认为可以显著增强氧扩散,同时保持结构稳定性,从而吸引了广泛的研究关注。相反,尽管氧空位的引入和相关的空位有序化在调节电子和自旋结构以及区分与 DP 的晶体结构方面起着决定性的作用,却很少在原子尺度上进行研究。在这里,原子分辨率透射电子显微镜用于直接对在 SrTiO 3 基底上生长的 (Pr,Ba)CoO 3 ‑ δ 薄膜中的氧空位进行成像并测量它们的浓度。我们发现,伴随着 Co − O 平面氧空位有序化的存在,A − O(A = Pr/Ba)平面也表现出类似呼吸的晶格调制。具体而言,经第一性原理计算证实,AO − AO 晶面间距与包围 Co − O 平面的空位浓度呈线性相关。在此基础上,讨论了氧占有对结构纯 PBCO 相催化性能的潜在影响。通过建立氧浓度与易于实现的晶格测量之间的简单关联,我们的研究结果为更好地理解用于电催化的缺氧复合钴酸盐的结构 - 性能关系铺平了道路。■ 简介
2月19日,星期日上午9:30 - 上午11:00房间9 Oroboros Instruments GMBH线粒体生物能学 - 一种定量的分析和诊断方法线粒体适应性对于大脑和肌肉功能至关重要,对可预防和年龄相关的变性性疾病的抵抗力至关重要,因此具有质量的质量。氧化磷酸化(OXPHOS)的能力是线粒体适应性的基本组成部分,也是生物能力中的关键元素。全面和实时的OXPHOS分析基于与线粒体核心能量代谢相关的生物物理和生化概念。它将生物能学扩展到线粒体生理水平,用于健康和疾病的功能诊断。Oroboros O2K是定量高分辨率呼吸测定法(HRR)和全面的OXPHOS分析的最新呼吸仪。它具有较高的信号稳定性和不受限制的滴定灵活性,适合于应用复杂的基板抑制剂抑制剂滴定(西装)方案,这是研究线粒体途径和呼吸控制健康和疾病的基础。高分辨率和对氧浓度的精确控制能够研究正氧,缺氧和高氧下的线粒体功能。使用O2K-荧光计,ROS产生的荧光测定,线粒体膜电位,ATP产生和钙吸收可以实时和同时与HRR直接结合。演讲者Erich Gnaiger,Oroboros Instruments GmbH用于监测Q-和NAD-REDOX状态和光生物学的模块在NextGen-O2K中实现,进一步扩展了分析分辨率和开放新窗口,以研究生物能学的生物物理原理。我们将介绍NextGen-O2K和O2K-Fluorespremeter的应用,以探索各种样品中的线粒体生理和病理学,并找到与线粒体相关疾病的溶液。
这项研究旨在评估补充益生菌的饮食(芽孢杆菌),益生元(壳聚糖)和合成生物学在120天内的生长性能,先天免疫系统,抗氧化剂水平,肠道社区和粮食质量。实验性鱼(15.5±0.352g)随机分布到12个矩形聚乙烯储罐中,每个储罐60鱼。测试了四种重复的四种治疗方法:对照,益生菌(Sanolife®Pro-F,Pro),益生元(壳聚糖,PRE)和合成生素(益生菌和壳聚糖的组合,SYN)。结果表明,在益生菌治疗中,溶解的氧浓度显着增加和pH水平提高。与对照组相比,所有处理中的联合氨(NH3)水平均降低。益生元补充的饮食显着改善了最终体重,最终长度,体重增加,状况因子,平均每日体重增加,特定的生长速度和存活率。在补充益生菌的所有处理中,血清溶菌酶活性和一氧化氮水平均高。此外,益生菌组中肝脏中的超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GPX)酶水平明显更高,而马发二醛(MDA)水平降低。益生菌的添加和合成生的存在增加了四个月的鱼类肠和池塘水的总细菌数量。病原性气管疏松性仅在对照组的水中鉴定出来。大肠杆菌和沙门氏菌。16S rDNA基因测序在益生菌处理的水中鉴定出了sphaericus sphaericus,在对照处理的肉体中鉴定出cile胶菌菌。添加芽孢杆菌菌株和壳聚糖分别增强了尼罗罗非鱼(Oreochromis niloticus)的生长和健康。
摘要 引言 痉挛是中风后常见的并发症,与运动恢复不良和活动受限有关。经颅磁刺激 (TMS) 和体外冲击波治疗 (ESWT) 都是治疗中风后痉挛 (PSS) 的有效方法。但目前尚无研究探讨 TMS 联合 ESWT 治疗 PSS 的安全性和有效性。方法与分析本研究将是一项前瞻性、单中心、随机、析因、对照临床试验。在本试验中,136 名 PSS 患者将随机分为 4 组:实验组 1(TMS)、实验组 2(ESWT)、实验组 3(ESWT+TMS)和对照组,每组 34 名患者;所有患者均接受常规康复治疗。结果测量将通过 4 个时间点进行评估:基线(T0)、开始治疗后 2 周(T1)、开始治疗后 4 周(T2)和随访(治疗结束后 4 周,T3)。主要结果是 T2 时的改良 Ashworth 量表。次要结果包括改良 Tardieu 量表(用于评估痉挛程度)、Fugl-Meyer 量表和运动功能运动范围 (ROM)、卒中特定生活质量量表 (SS-QOL) 和改良 Barthel 指数(用于评估生活活动)、通过 TMS-表面肌电图 (EMG) 测量的皮质兴奋性、通过功能性近红外光谱 (fNIRS) 测量的大脑皮层氧浓度和通过 EMG 测量的 H max /M max 比率。伦理与传播 本研究方案已于2024年1月24日经解放军陆军医学中心伦理委员会批准(批准文号:2024-04)。本研究将通过同行评审的出版物和会议报告进行传播。 试验注册号 本研究已在中国临床试验注册中心注册( https://www.chictr. org.cn/ ;唯一标识符:ChiCTR2400080862;数据:2024年2月9日;研究方案V. 2.0)。
摘要 引言 中风后经常出现平衡障碍。实现有效的核心躯干稳定性是提高平衡能力的关键。然而,对于中风患者的平衡改善,仍然缺乏先进而明确的康复方案。间歇性 θ 爆发刺激 (iTBS) 是一种非侵入性脑活动调节策略,可以产生长期增强作用。小脑蚓部是参与平衡和运动控制的基本结构。然而,还没有研究证明小脑蚓部 iTBS 对中风后平衡的治疗效果和潜在机制。 方法与分析 本研究将是一项前瞻性单中心双盲随机对照临床试验,干预时间为 3 周,随访时间为 3 周。符合条件的参与者将以 1:1 的比例随机分配到实验组或对照组。在常规常规物理治疗后,实验组患者将接受小脑蚓部 iTBS,而对照组患者将接受假刺激。总体干预期为每周5天,连续3周。在基线(T0)、干预后3周(T1)和3周随访(T2)测量结果。主要结果是Berg平衡量表和躯干障碍量表评分。次要结果是通过Balance Master系统获得的平衡测试分数、通过表面肌电图记录获得的躯干和下肢肌肉激活度、通过静息态功能性近红外光谱测量的大脑皮层氧浓度、Fugl-Meyer下肢评估和Barthel指数评分。伦理与传播 本研究经四川大学华西医院临床试验和生物医学伦理委员会批准。所有参与者自愿签署知情同意书。本研究结果将发表在同行评议期刊上并在学术会议上传播。试验注册号为ChiCTR2200065369。
收集了净扭矩和NOx排放量等性能数据。使用基于 APRBS 和 Chirp 信号的输入信号,我们获得了大约 68.9 小时的训练数据和大约 8.3 小时的模型验证数据。此外,为了验证目的,我们还获取了日本目前用于乘用车认证测试的WLTC全球统一测试循环下的30分钟模拟驾驶数据。请注意,用于获取验证数据的 APRBS 和 Chirp 信号不包含在用于获取训练数据的输入信号中。 VDE模型中数据采样周期为0.01秒,数值实验获取的数据点数如表2所示。 2.2 AI引擎模型构建及性能评估 本研究在构建重现VDE特征的AI引擎模型时,采用了神经网络这种机器学习算法,也是一种模仿人类神经系统的数学模型。 AI发动机模型被设想用作第3章中描述的燃烧控制器的状态预测模型。在这里,我们构建了一个模型来预测燃烧控制器控制的三个目标:燃烧重心位置、燃烧周期和净扭矩。表3给出了AI引擎模型的输入和输出参数列表。对于输入参数,事先使用XGBoost(eXtreme Gradient Boosting)9)构建预测模型,并利用SHAP(SHapley Additive exPla-nations)10)进行重要性分析,选取对预测目标影响力较大的参数。此外,对于输入参数,进气压力和进气氧浓度是使用过去四秒的时间序列数据来测量的,同时考虑到瞬态运行期间的响应延迟。 在建立模型时,神经网络中超参数的设置对准确率有很大的影响。因此,在本研究中,我们使用树结构 Parzen 估计器 (TPE)11) 来优化隐藏层的数量和神经元的数量。在 TPE 中,我们设置了最小化评估函数的超参数。
摘要背景:由于缺乏对生物过滤反应器中污染物去除过程和细菌群落动态的了解,因此值得研究。本综述探讨了生物过滤过程、常用的生物过滤器类型、细菌群落动态和生物过滤器中的污染物去除机制。方法:本综述使用了 Scopus、EBSCO 和 ProQuest 上发表的先前研究的数据,这些研究分为生物过滤过程、生物过滤器类型、细菌群落动态和污染物去除机制等参数。对数据进行了叙述、表格分析和综述。结果:在生物过滤反应器中,微生物覆盖介质,使污染物流过缝隙并接触生物膜层。随着生物膜变厚,粘附性减弱,从而产生新的菌落。沉床生物过滤器、滴滤器和填料塔曝气和气化系统可有效去除水生环境中的营养物质。生物过滤器细菌群落按过滤层深度分类,上层为快速生长、不太专业的群落,底层为更专业的群落。污染物的生物降解取决于多种因素,如营养物质的有效性、氧浓度、pH 值、污染物的生物利用度以及生物质的物理和化学特性。结论:生物滤池反应器利用微生物覆盖介质,使污染物流过缝隙并接触降解有机化合物的生物膜层。淹没床生物过滤器、滴滤池和填料柱曝气系统可以有效去除污染物。生物滤池细菌群落按滤层深度分类,上层为快速生长、专业化程度较低的群落,底层为专业化程度较高的群落。关键词:废水、细菌、生物膜、环境污染物、营养物质引用:Muliyadi M、Purwanto P、Sumiyati S、Hadiyanto H、Sudarno S、Budiyono B 等。生物过滤器中的细菌群落动态和污染物去除机制:文献综述。环境健康工程与管理杂志 2024; 11(4): 477-492 doi: 10.34172/EHEM.2024.47 。
摘要 — 本文介绍了一种基于电阻抗传感的低成本便携式微流式细胞仪的开发和测试,用于在受控氧微环境下进行单细胞分析。该细胞仪系统基于 AD5933 阻抗分析仪芯片、微流控芯片和由定制 Android 应用程序操作的 Arduino 微控制器。对受镰状细胞病影响的人类红细胞 (RBC) 进行了代表性案例研究,以证明该细胞仪系统的能力。悬浮生物细胞的等效电路模型用于解释单个流动 RBC 的电阻抗。在正常血液中,细胞质电阻和膜电容不会随着氧张力的变化而显着变化。相反,受镰状细胞病影响的 RBC 显示,在缺氧治疗后,细胞质电阻从 11.6 M Ω 降低到 23.4 M Ω,膜电容从 1.1 pF 降低到 0.8 pF。单细胞亚细胞电成分的变化与缺氧治疗引起的细胞镰状过程之间存在很强的相关性。本文报告的代表性结果表明,单细胞电阻抗可用作量化细胞对氧浓度变化反应的敏感生物物理标记。开发的流式细胞术系统和方法还可以扩展到分析其他细胞类型对缺氧的反应。索引术语——电阻抗、微流式细胞术、单细胞分析、缺氧、镰状细胞病I. 引言缺氧(体内缺氧)会导致细胞发生各种生理变化。在全身和单细胞水平上,人们对高海拔或深海潜水引起的缺氧生理反应或病理反应进行了广泛的研究 [1, 2]。单细胞悬浮液的分析已经成为重要的医学兴趣。细胞对缺氧反应的研究为肿瘤病理学 [3]、癌症治疗 [4]、心血管病理生理学 [5]、代谢 [6, 7] 和哺乳动物细胞的稳态机制 [8] 提供了见解。测量细胞缺氧和缺氧环境反应的黄金标准是通过流式细胞术分析单个细胞,测量蛋白质水平,例如缺氧诱导因子 1-alpha (HIF1 α ) 和 BCL2/腺病毒 E1B 19 kDa 蛋白相互作用蛋白 3 (BNIP3) [9, 10]。该方法通过基于抗体的免疫染色针对目标蛋白质提供高特异性,但也需要固定和透化所分析的细胞。最近,基于电阻抗的流式细胞术已被证明是分析单个细胞的传统光学方法的替代方法。它本质上是定量的、非侵入性的和无标记的,