摘要:第XIIIA(FXIIIA)是一种主要治疗兴趣的转谷氨酰胺酶,这是由于其在血液凝结级联反应中的重要作用而发展抗凝剂。虽然已经报道了许多FXIIIA抑制剂,但由于缺乏代谢稳定性和对转谷氨酰胺酶2(TG2)的选择性低,因此未能达到临床评估。此外,用于研究FXIIIA活性和定位的化学工具非常有限。为了消除这些缺点,我们设计,合成和评估了21个新型FXIIIA抑制剂的库。亲电战争头,接头长度和疏水单位在小分子和肽支架上有所不同,以优化同工酶的选择性和效力。然后,将先前报道的FXIIIA抑制剂改编成具有若丹明B部分的探针设计,从而产生创新的KM93作为首次已知的溶液探针,旨在选择性地标记具有较高功能的活性FXIIIA(k Inact / k Inact / k I = 127,300 m-1-1-1-5-5-5)。探针KM93在骨髓巨噬细胞中促进了荧光显微镜研究,在细胞培养中标记具有较高效率和选择性的FXIIIA。这些新型抑制剂和探针的结构 - 活动趋势将有助于对活动,抑制和定位FXIIA的未来研究。
1 土耳其科尼亚塞尔丘克大学药学院药物化学系 * 通讯作者电子邮件:kucukogluk35@hotmail.com 要点 人类谷氨酰胺环化酶 (hQC) 有两种同工型,即分泌型 QC (也称为 sQC) 和高尔基定位型 QC (也称为 isoQC 或 gQC)。 hQC 通过释放氨或水介导 N 端谷氨酰胺或谷氨酸残基的环化。 在某些疾病中,QC 的分泌水平会增加,例如阿尔茨海默氏症 (AD)、亨廷顿氏病 (HD)、黑色素瘤、甲状腺癌、动脉粥样硬化的快速形成、化脓性关节炎。 近年来,发现抑制 QC 的新药被认为是预防和治疗许多生理问题和疾病的重要方法。 已发现具有咪唑骨架的化合物具有抑制 QC 的潜力。这些药物中最引人注目的一种是瓦罗谷氨酸司他,目前正处于阶段研究中。 ARTICLEINFO 收稿日期:2022 年 5 月 21 日 接受日期:2022 年 6 月 25 日 发表日期:2022 年 7 月 15 日 关键词:阿尔茨海默氏症淀粉样蛋白β谷氨酰胺环化酶焦谷氨酸修饰瓦罗谷氨酸司他
吡咯赖氨酸-tRNA 合成酶(PylRS)通常用于将非规范氨基酸(ncAA)位点特异性掺入蛋白质中。最近,Methanomethylophilus alvus PylRS(Ma PylRS)的活性位点经过合理设计,以扩大其底物兼容性,从而能够掺入难以结合的 ncAA。然而,尚未报道活性位点以外的可增强 Ma PylRS 酶特性的突变。我们利用噬菌体辅助非连续进化(PANCE)来进化 Ma PylRS,以有效掺入 N ε -Boc- L -赖氨酸(BocK)。定向进化产生了活性位点外的几种突变,这些突变大大提高了酶的活性。我们结合最有效的突变来生成一种新的 PylRS 变体(PylRS opt),它对几种赖氨酸和苯丙氨酸衍生物具有高活性和选择性。 PylRS opt 中的突变可用于增强先前设计的 PylRS 构建体,例如 Ma PylRS N166S,并且 PylRS opt 适用于需要双 ncAA 掺入的应用,并可显著提高这些目标蛋白的产量。
摘要:多聚谷氨酰胺 (polyQ) 疾病,包括亨廷顿氏病,是一组由 CAG 重复扩增引起的晚发型进行性神经系统疾病。尽管最近有许多研究调查了 polyQ 疾病的病理特征和发展,但仍有许多问题尚未得到解答。新基因编辑技术的进步,尤其是 CRISPR-Cas9 技术,对于生成相关的 polyQ 模型具有不可否认的价值,这为研究过程提供了实质性支持。在这里,我们回顾了如何使用这些工具来纠正致病突变或创建具有不同 CAG 重复数的同源细胞系。我们描述了各种细胞模型,例如 HEK 293 细胞、患者来源的成纤维细胞、人类胚胎干细胞 (hESC)、诱导性多能干细胞 (iPSC) 和使用基因组编辑技术生成的动物模型。
摘要:多聚谷氨酰胺脊髓小脑共济失调 (SCA) 是由单个基因编码区胞嘧啶-腺嘌呤-鸟嘌呤重复扩增引起的六种常染色体显性共济失调的异质性群体。目前,这些疾病尚无治愈或减缓疾病的治疗方法,但它们的单基因遗传为基因治疗策略的发展提供了理论依据。事实上,RNA 干扰策略已在 SCA1、SCA3、SCA6 和 SCA7 的细胞和/或动物模型中显示出有希望的发现。此外,反义寡核苷酸疗法已在 SCA1、SCA2、SCA3 和 SCA7 模型中提供了令人鼓舞的概念证明,但它们尚未进入临床试验。相反,基因编辑策略,例如成簇的规律间隔的短回文重复序列 (CRISPR/Cas9),已被引入
通信:Nathan E Lewis,nlewisres@ucsd.edu。作者声明Karen Julie La Cour Karottki:正式分析,调查,可视化,写作 - 原始草稿,写作 - 评论和编辑; Hooman Hefzi:正式分析,调查,可视化,写作 - 原始草稿,写作 - 评论和编辑; Songyuan Li:调查,写作 - 评论和编辑; Lasse Ebdrup Pedersen:正式分析,监督,写作 - 原始草稿,写作 - 评论和编辑; Philipp N. Spahn:资源,软件; Chintan Joshi:正式分析,写作 - 原始草稿; David Ruckerbauer:资源,写作 - 评论和编辑; Juan A. Hernandez Bort:资源,写作 - 评论和编辑;亚历克斯·托马斯(Alex Thomas):数据策划; Jae Seong Lee:调查,监督,写作 - 原始草稿,写作 - 评论和编辑;妮可·博斯(Nicole Borth):资源,写作 - 评论和编辑; Gyun Min Lee:监督,写作 - 评论和编辑; Helene Faustrup Kildegaard:概念化,项目管理,资金获取,监督,写作 - 评论和编辑;内森·刘易斯(Nathan E.
摘要癌细胞对谷氨酰胺的依赖性可能会被用作治疗方法,以作为治疗缺乏药物驱动基因的癌症的新策略。在这里,我们发现人肝癌取决于细胞外谷氨酰胺。然而,使用谷氨酰胺酶CB-839作为单药治疗靶向谷氨酰胺成瘾的抗癌作用非常有限,即使是针对最大的谷氨酰胺上瘾的人肝癌细胞。使用化学文库,我们确定了V-9302是一种新型的谷氨酰胺转运蛋白ASCT2的抑制剂,将其依赖性谷氨酰胺依赖性(GD)细胞对CB-839治疗敏感。从机械上讲,CB-839和V-9302耗尽的谷胱甘肽和诱导的活性氧(ROS)的组合,导致GD细胞凋亡。此外,这种组合还显示了体内HCC异种移植小鼠模型的肿瘤抑制作用。我们的发现表明,通过靶向谷氨酰胺酶和谷氨酰胺转运蛋白ASCT2对谷氨酰胺代谢的双重抑制代表了谷氨酰胺上瘾的肝癌的潜在新型治疗策略。
简介 肿瘤细胞的快速生长需要专门的代谢重编程。肿瘤代谢不仅促进生长,而且还会创造一种肿瘤微环境 (TME),通过消耗关键代谢物(如色氨酸、葡萄糖和谷氨酰胺)并产生抑制性代谢物(如犬尿氨酸)来抑制免疫效应功能。或者,抑制性免疫细胞在 TME 中茁壮成长,这些细胞在代谢上与效应细胞不同 (1-3)。TME 中最突出的免疫细胞类型之一是抑制性巨噬细胞。巨噬细胞是肿瘤的主要组成部分,参与癌症的发生、发展、血管生成、转移和创造免疫抑制环境 (4-7)。此外,肿瘤相关巨噬细胞 (TAM) 表达代谢酶,如 iNOS 或精氨酸酶 1(这两种酶都会导致精氨酸耗竭)和 IDO(一种导致色氨酸耗竭的酶),可抑制 T 细胞活化和增殖 (8–11)。TAM 还表达 PDL1 和 PDL2,它们与 PD1 在
如上所述,很明显药物的吸收和与分子细胞系统的相互作用是复杂的现象,并且受到特定膜转运蛋白的功能或功能障碍的强烈影响[8–10]。因此,药物-转运蛋白相互作用预计在人类治疗中发挥关键作用[11,12],或者在其他情况下,由于所谓的脱靶相互作用而引发副作用[13]。经过几十年的研究,现在人们普遍认为,在药物设计中必须考虑膜转运蛋白,以改善药物输送和疗效。在这方面,国际转运蛋白联盟[14]成立,旨在确定:(i)必须考虑哪些转运蛋白来改善药物吸收;(ii)用于测定和筛选药物-转运蛋白相互作用的合适生物技术;(iii)需要考虑脱靶效应的转运蛋白[15,16]。实验室自动化与筛选协会 (SLAS, https://www.slas.org ) 也开始考虑膜转运蛋白在药物发现中的应用 [17]。研究转运蛋白的最新方法进步引发了对膜转运蛋白和药物-转运蛋白相互作用的研究呈指数级增长 [18–20]。在这种情况下,人们对一组特殊的膜转运蛋白产生了浓厚的兴趣:谷氨酰胺转运蛋白。人们对这组蛋白质的兴趣日益浓厚的原因有很多,从基础知识的提高到谷氨酰胺转运参与细胞生命的关键过程及其在人类病理学中的作用。最后一个方面为利用这些蛋白质作为人类治疗的新靶点开辟了新的、非常有希望的前景。在这篇评论中,将总结这一迅速发展的领域的现状。
小麦麸质蛋白是已知的乳糜泻病因。这些蛋白质中脯氨酸和谷氨酰胺残基的重复序列使其在胃肠道中具有极强的抗消化性。这些未消化的肽会引发易感个体的免疫反应,这可能是过敏反应或乳糜泻。麸质排除饮食是此类疾病的唯一获批疗法。最近,大麦中的谷氨酰胺特异性内切蛋白酶 (EP-B2) 和脑膜炎黄杆菌中的脯氨酰内切肽酶 (Fm-PEP) 的组合在小麦胚乳中表达时,在模拟胃肠道条件下被证明可以合理地解毒免疫原性麸质肽。尽管这些“麸质酶”很有用,但它们的应用受到限制,因为它们在高温下会变性,而大多数食品加工都需要高温。这些酶的变体来自嗜热生物,但由于其最佳活性在高于 37 ◦ C 的温度下存在,因此不能直接应用。不过,这些酶可以作为参考,指导中温来源的肽酶向热稳定性进化。因此,这里使用序列引导的位点饱和诱变方法在编码 Fm-PEP 和 EP-B2 的基因中引入突变。使用这种方法鉴定出能够在高达 90 ◦ C 的温度下存活的 Fm-PEP 的热稳定性变体和热稳定性高达 60 ◦ C 的 EP-B2 变体。然而,达到的热稳定性水平还不够;本研究提供了可以提高谷蛋白酶热稳定性的证据。并且这项初步研究为未来更详细的结构研究奠定了基础,以获得可以在 ∼ 100 ◦ C 温度下存活的 Fm-PEP 和 EP-B2 变体,从而可以将其包装在谷物中并将此类谷物用于食品工业。