蛋白质结构是理解蛋白质功能的关键,对于生物工程,药物发现和分子生物学的进展至关重要。最近,随着生成AI的结合,计算蛋白结构预测/设计的功率和准确性已得到显着提高。然而,诸如版权保护和有害内容产生(生物安全)等道德问题对蛋白质生成模型的广泛实施构成了挑战。在这里,我们研究是否可以将水印嵌入蛋白质生成模型及其输出中,以进行版权认证和跟踪生成的结构。作为概念证明,我们提出了一个两阶段的方法折叠标记,作为蛋白质生成模型的广义水印策略。FOLSMARK首先要预处理水印编码器和解码器,它们可以轻微调整蛋白质结构以嵌入用户特定的信息,并忠实地从编码结构中恢复信息。在第二步中,蛋白质生成模型通过水印条件的低级适应(Waterlora)模块进行微调,以保持发电质量,同时学习产生具有高回收率的水印结构。广泛的实验是在开源蛋白结构预测模型(例如Esmfold和Multiflow)和从头结构设计模型(例如Framediff和Foldflow)上进行的,我们证明我们的方法在所有这些生成模型中都是有效的。同时,我们的水印框架只会对原始蛋白质结构质量产生可忽略的影响,并且在潜在的后加工和适应性攻击下具有强大的影响。
一个非拟合组织计划开放分类器F,但希望通过将水印直接嵌入模型中来检测其使用。爱丽丝的任务是创建此水印。鲍勃的目的是使F在对手方面稳健,即确保很难找到看起来不奇怪但会导致F犯错误的查询。两个面临挑战:爱丽丝努力创建无法消除的水印,而鲍勃的防御措施变得越来越复杂。他们发现自己的项目已连接。爱丽丝的想法是在F中种植一个后门[1,2],使她能够用隐藏的扳机来制作查询,该扳机激活后门,导致F错误分类,从而检测到F的使用。鲍勃的方法涉及平滑F以增强鲁棒性,这无意中消除了此类后门[2]。他们意识到自己的挑战是同一枚硬币的两个方面:一项任务的不可能可以保证另一个任务的成功。
根据本许可的条款,您可以出于非商业目的复制,重新分配和调整工作,前提是适当地引用了工作。在任何使用这项工作时,不应建议ITU认可任何特定的组织,产品或服务。不允许未经授权使用ITU名称或徽标。如果您适应了工作,则必须根据相同或同等的创意共享许可证许可您的工作。如果您创建了这项工作的翻译,则应添加以下免责声明以及建议的引用:“此翻译不是由国际电信联盟(ITU)创建的。itu对此翻译的内容或准确性不承担任何责任。原始英语版应为绑定和真实版”。有关更多信息,请访问https://creativecommons.org/licenses/by-nc-sa/3.0/igo/
在上面的屏幕中,我们可以看到从水印图像中提取的二进制值,然后单击“用原始图像编码加密的水印对”按钮隐藏原始图像中的加密水印
DeepFake模型滥用构成了主要的安全性。现有的被动和主动的深层检测方法都缺乏义务和鲁棒性。在这项研究中,我们提出了一个可插入式有效的活性模型水印框架以进行深泡泡检测。这种方法促进了识别水印在各种深层生成模型中的嵌入,使当局能够轻松提取它们以进行检测。具体来说,我们的方法利用生成模型解码器中的通用卷积结构。它采用自适应水嵌入定位的结合内核稀疏性,并引入了汇总内核的归一化,以无缝地与固有模型的水印参数无缝。对于水印提取,我们基于深层检测模型共同训练水印提取器,并使用BCH编码有效地识别水印图像。最后,我们将方法应用于八种主要类型的深泡剂模型。实验表明,即使在沉重的损失通道中,我们的方法可成功地检测到平均准确性超过94%的深烟。这种方法独立于发电模型的培训,而不会影响原始模型的性能。此外,我们的模型需要培训数量非常有限的参数,并且对三种主要的自适应攻击具有弹性。可以在https://github.com/guaizao/pluggable-watermarking
指纹识别(或复制检测)存储数据库中所有AI生成内容的哈希,例如。Neuralhash(Apple Inc.,2021年)。这些哈希是向量表示∈{0,1} k或r k通常是由自我保护的特征提取器生成的(Oquab等人。,2023; Devlin等。,2018年)。查询一块内容时,我们将其哈希与数据库中的哈希进行了比较,并确定它是否是重新发电的副本。在大规模上,存储哈希并通过它们进行搜索很麻烦,并且反向搜索必须近似以易于处理(Douze等人。,2024)。此外,功能提取器对内容修改并不完全鲁棒:例如,音频及其×1.25速度版本可能具有不同的哈希。这两个因素会导致错误,尤其是在对抗环境中(Douze等人,2021; Papakipos等。,2022)。另一个缺点是需要将哈希存储在数据库中,这使得很难共享,而开源场景不可能。
潜在的生成模型(例如,稳定的扩散)变得越来越流行,但是关于这些模型产生的图像的潜在滥用,出现了概念。因此,有必要通过推断特定的潜在生成模型来分析特定图像来分析图像的起源。大多数现有的方法(例如,图像水印和模型指纹打印)在训练或发电过程中需要额外的步骤。这些要求限制了它们在生成的图像上的使用情况,而无需此类操作,额外的操作可能会损害生成的图像的质量。在这项工作中,我们询问是否有可能有效,有效地追踪具有上述要求的特定潜在生成模型所产生的图像。为了研究此问题,我们设计了一种基于潜在反转的方法,称为L atent t Racer,以通过检查检查的图像是否可以使用倒置的潜在输入来构造了检查的图像,以追踪检查模型的固定图像。我们利用基于级别的潜在反转,并确定基于编码的初始化对我们方法的成功至关重要。我们对最先进的潜在生成模型(例如稳定的扩散)进行的实验表明,我们的方法可以以很高的精度和效率来区分被检查模型和其他IMEGES生成的图像。我们的发现表明,当今的潜在生成生成的图像自然是由源模型中使用的解码器自然水印的有趣可能性。代码:https:// github。com/zhentingwang/litenttracer。
1. 亚马逊网络服务新加坡 (AWS 新加坡) AWS 新加坡在数据中心运营中表现出对节水和可持续性的非凡承诺,为其行业内外的水资源管理树立了鼓舞人心的标准。这是由 AWS 到 2030 年实现水资源节约的目标推动的,即向社区返还的水量要超过其直接运营所用的量。他们的努力为他们赢得了当之无愧的 SWMA 2024。 运营中的用水效率 自 2010 年启动 AWS 亚太地区 (新加坡) 区域以来,AWS 新加坡已为其数据中心实施了节水冷却塔设计,以减少用水量。他们还一直在升级运营能力以优化用水,使 AWS 新加坡跻身数据中心领域表现最好的 10% 之列。最近,AWS 新加坡与当地一家初创公司合作,投资并共同开发废水回收技术,使他们能够在现场处理和回收水,从而实现更大的节水效果。
创建一条关于我即将在卡内基梅隆大学(CMU,匹兹堡)发表的演讲的热门推文,标题为“大型语言模型的水印”。主题包括水印、检测人工智能生成的文本、保护模型的版权。尽量让它风趣幽默。
