Loading...
机构名称:
¥ 1.0

DeepFake模型滥用构成了主要的安全性。现有的被动和主动的深层检测方法都缺乏义务和鲁棒性。在这项研究中,我们提出了一个可插入式有效的活性模型水印框架以进行深泡泡检测。这种方法促进了识别水印在各种深层生成模型中的嵌入,使当局能够轻松提取它们以进行检测。具体来说,我们的方法利用生成模型解码器中的通用卷积结构。它采用自适应水嵌入定位的结合内核稀疏性,并引入了汇总内核的归一化,以无缝地与固有模型的水印参数无缝。对于水印提取,我们基于深层检测模型共同训练水印提取器,并使用BCH编码有效地识别水印图像。最后,我们将方法应用于八种主要类型的深泡剂模型。实验表明,即使在沉重的损失通道中,我们的方法可成功地检测到平均准确性超过94%的深烟。这种方法独立于发电模型的培训,而不会影响原始模型的性能。此外,我们的模型需要培训数量非常有限的参数,并且对三种主要的自适应攻击具有弹性。可以在https://github.com/guaizao/pluggable-watermarking

DeepFake模型的可插入水印

DeepFake模型的可插入水印PDF文件第1页

DeepFake模型的可插入水印PDF文件第2页

DeepFake模型的可插入水印PDF文件第3页

DeepFake模型的可插入水印PDF文件第4页

DeepFake模型的可插入水印PDF文件第5页