在实践中,在训练 AI 模型时,训练数据的标记主要用于对图像进行分类(例如汽车或动物)。另一方面,文本的标记有助于识别情绪或特定关键词。对于旨在识别语音的 AI 系统的训练,标记还可以包括转录录音或识别音频输入文件中的特定噪音(例如背景中的交通或飞机)。
摘要:这项研究是关于在Paddleocr中实施Yolo算法和机器学习的几个方面。提及讨论了这种技术集成以及他们在实现现实世界情景中完成任务和预期使用的方式。本文通过广泛分析文献并进行故意实验来实现这一目标。在本文中还捕获了有关算法有效性和挑战的见解。当代计算机视觉系统利用Yolo(您只看一次)和Paddleocr等有效的机器学习方法在几乎每个工业领域都扩展了。本文涉及这些算法在广泛的程序中的整合以及对实际领域的结果影响。本文对最新文献和实验分析进行了系统性阅读,以提出其用法的这一重要方面,未来的挑战及其前景。关键字:Yolo算法,Paddleocr,机器学习,对象检测,光学特征识别,深度学习。
摘要:RSA是最广泛采用的公钥加密算法之一,它通过利用模块化指数和大质量分解的数学属性来确保安全通信。但是,其计算复杂性和高资源要求对实时和高速应用构成重大挑战。本文通过提出针对RSA加密和解密的优化非常大规模的集成(VLSI)设计来解决这些挑战,重点是加速模块化凸起过程,这是RSA计算的核心。设计结合了蒙哥马利模块化乘法,以消除时间密集型的分裂操作,从而在模块化算术域中有效地计算。它进一步整合了诸如管道,并行处理和随身携带加盖之类的技术,以减少关键路径延迟并增强吞吐量。模块化启动是使用正方形和多种方法的可扩展迭代方法实现的,该方法针对硬件效率进行了优化。硬件原型是使用FPGA和ASIC平台合成和测试的,在速度,区域和功耗方面表现出卓越的性能。所提出的体系结构在保持安全性和可扩展性的同时,可以实现高速操作,使其适用于实时的加密应用程序,例如安全通信,数字签名和身份验证系统。与现有实现的比较分析突出了重大改进,将提出的设计作为下一代安全硬件加速器的可行解决方案。关键字:RSA算法,Verilog,FPGA
侵入性真菌感染每年在全球造成超过160万患者,由于抗真菌药物数量有限(偶氮,echinocandins和polyeners)以及抗真菌耐药性的出现,因此难以治疗。转录因子CRZ1是细胞应激反应和毒力的关键调节剂,是一个有吸引力的治疗靶标,因为该蛋白在人类细胞中不存在。在这里,我们使用了CRISPR-CAS9方法在两个抗Caspofungin的c临床分离株中产生同基因CRZ1Δ菌株。glabrata分析了该转录因子在非脊椎动物(Galleria mellonella)和脊椎动物(小鼠)念珠菌病模型中对eChinocandins,胁迫耐受性,生物膜的形成和致病性的敏感性的作用。在这些临床分离株中,CRZ1破坏恢复了体外和体内模型中echinocandins的敏感性,并影响其氧气应激反应,生物膜形成,细胞大小和致病性。这些结果强烈表明,考虑到抗真菌抗性的出现和可用的抗真菌药物数量少,CRZ1抑制剂可能在针对真菌感染的新型雌激素中起重要作用。
摘要 - 基于EEG的神经网络,医学诊断和脑部计算机界面的关键,由于依赖敏感的神经生理数据和资源密集型发展,面临着重要的知识产权(IP)风险。当前的水印方法,尤其是使用抽象触发器集的方法,缺乏强大的身份验证,并且无法解决EEG模型的独特挑战。本文介绍了针对基于EEG的神经网络量身定制的基于密码的Wonder滤清器水印框架。利用抗碰撞的哈希功能和所有者的私钥,Wonder Filter在训练过程中嵌入了位水印,可确保最小的失真(EEG任务准确性下降5%)和高可靠性(100%水印检测)。该框架是针对对抗性攻击的严格评估,包括微调,转移学习和神经元修剪。的结果表明,即使在积极的修剪后,水印状态的分类准确性仍然超过90%,而主要的任务绩效降低了速度,却阻止了去除尝试的速度。盗版性耐药性通过无法嵌入次级水印而没有严重准确性损失(在EEGNET和CCNN模型中> 10%)来验证。加密散列可确保身份验证,从而降低了蛮力攻击成功概率。在DEAP数据集上进行了跨模型(CCNN,EEGNET,TSEPTION)的评估,该方法达到了> 99。4%的无效剂量准确性,有效地消除了误报。通过将Wonder过滤器与EEG特异性改编整合在一起,这项工作弥合了神经生理模型的IP保护方面的关键差距,为医疗保健和生物识别应用提供了安全的,防篡改的解决方案。该框架针对对抗性修饰的鲁棒性强调了其在维护诊断效用的同时维护敏感的脑电图模型的潜力,从而促进了对AI驱动的生物医学技术的信任。
摘要。物联网(IoT)几乎将互联网和智能设备集成到家庭自动化,电子保健系统,车辆网络,工业控制和军事应用等域。在这些扇区中,从多个来源收集的感官数据,并通过多个节点进行管理,用于决策过程。确保数据完整性并跟踪数据出处是在如此高度动态的环境下的核心要求,因为数据出处是确保数据可信度的重要工具。由于物联网网络工作中的计算和能源有限,处理此类要求是具有挑战性的。这需要解决一些挑战,例如处理开销,安全出处,带宽消耗和存储效率。在本文中,我们提出了锆石,这是一种新型的零水印方法,以在物联网网络中建立端到端数据可信度。在锆石中,出处信息存储在通过水印的防篡改集中式网络数据库中,在传输前在源节点生成的水印。我们提供了广泛的安全性分析,显示了我们计划针对被动和主动攻击的弹性。我们还将我们的计划与基于绩效指标(例如计算时间,能源利用率和成本分析)的现有作品进行了比较。结果表明,与先前的艺术相比,锆石对几种攻击,轻量级,储存效果和能量利用和带宽消耗效果更好。
摘要:联合学习(FL)是一种允许多个参与者协作训练深神经网络(DNN)的技术,而无需集中数据。除其他优点外,它具有保护隐私性的财产,使其对在敏感环境(例如医疗保健或军方)的应用中具有吸引力。尽管没有明确交换数据,但培训程序需要共享有关参与者模型的信息。这使各个模型容易受到恶意演员的盗窃或未经授权的分配的影响。为了解决机器学习(ML)的所有权保护问题,在过去的五年中已经开发了DNN水印方法。大多数现有的作品都以集中式的方式着重于水印,但仅针对FL及其独特的限制设计了一些方法。在本文中,我们概述了联合学习水印的最新进步,阐明了这一领域中出现的新挑战和机遇。
生成的AI(Genai)技术,例如语言模型(LMS)和扩散模型,具有令人印象深刻的功能。这些功能包括文本学习,代码完成,文本到图像生成以及文档和代码聊天。然而,Genai技术也用于邪恶目的(例如,产生伪造的推文,产生攻击和有害散文)。To protect against such use cases, a large body of work has focused on detecting AI-generated content (Lavergne et al., 2008; Beresneva, 2016; Gehrmann et al., 2019; Zellers et al., 2019; Mitchell et al., 2023; GPTZero, 2023; Hendrik Kirchner et al., 2023).问题是:给定内容C,C是由特定的Genai工具生成的,例如GPT-4(OpenAI,2023),Gemini(Google DeepMind,2024)或稳定的扩散(Rombach等,2022)?非正式地,我们想要“ Genai Turing测试”。目前,试图检测任意AI生成的文本的主要方法是训练另一个AI模型以执行检测(Zellers等,2019; Mitchell等,2023; Gptzero,2023; Hendrik Kirchner等人,2023年,2023年)。此方法提出了一个关键的假设:AI生成的文本具有可通过AI识别的嵌入功能。这个假设的关键问题是,生成模型是明确设计的,以产生很难与自然内容(由人类或自然产生的)区分的现实内容。结果,随着生成模型的改善,任何“黑盒”检测方案都将遭受高误报和/或假阴性率。这些水印技术改变了生成过程,将“信号”嵌入生成的内容中。可用的探测器,例如Gptzero(Gptzero,2023)无法保证正确性 - 例如,作者直接指出,不应使用其工具引起的检测来谴责学生。为了避免这个基本问题,最近的一项工作(Aaronson,2023; Kirchenbauer等,2023; Christ等,2024; Kuditipudi等,2024)采取了另一种方法来检测AI含量。检测过程衡量信号:如果信号足够强,则可能是水标水标的。特别是Christ等人的加密方法。(2024)实现正式的完整概念(将检测到任何水印的文本),健全性(一个人不知道秘密而不能在文本上加水印)和失真(水印不会改变输出分布)。最后,这些水印
生成的AI(Genai)技术,例如语言模型(LMS)和扩散模型,具有令人印象深刻的功能。这些功能包括文本学习,代码完成,文本到图像生成以及文档和代码聊天。然而,Genai技术也用于邪恶目的(例如,产生伪造的推文,产生攻击和有害散文)。To protect against such use cases, a large body of work has focused on detecting AI-generated content (Lavergne et al., 2008; Beresneva, 2016; Gehrmann et al., 2019; Zellers et al., 2019; Mitchell et al., 2023; GPTZero, 2023; Hendrik Kirchner et al., 2023).问题是:给定内容C,C是由特定的Genai工具生成的,例如GPT-4(OpenAI,2023),Gemini(Google DeepMind,2024)或稳定的扩散(Rombach等,2022)?非正式地,我们想要“ Genai Turing测试”。目前,试图检测任意AI生成的文本的主要方法是训练另一个AI模型以执行检测(Zellers等,2019; Mitchell等,2023; Gptzero,2023; Hendrik Kirchner等人,2023年,2023年)。此方法提出了一个关键的假设:AI生成的文本具有可通过AI识别的嵌入功能。这个假设的关键问题是,生成模型是明确设计的,以产生很难与自然内容(由人类或自然产生的)区分的现实内容。结果,随着生成模型的改善,任何“黑盒”检测方案都将遭受高误报和/或假阴性率。这些水印技术改变了生成过程,将“信号”嵌入生成的内容中。可用的探测器,例如Gptzero(Gptzero,2023)无法保证正确性 - 例如,作者直接指出,不应使用其工具引起的检测来谴责学生。为了避免这个基本问题,最近的一项工作(Aaronson,2023; Kirchenbauer等,2023; Christ等,2024; Kuditipudi等,2024)采取了另一种方法来检测AI含量。检测过程衡量信号:如果信号足够强,则可能是水标水标的。特别是Christ等人的加密方法。(2024)实现正式的完整概念(将检测到任何水印的文本),健全性(一个人不知道秘密而不能在文本上加水印)和失真(水印不会改变输出分布)。最后,这些水印
随着图像生成器的质量不断提高,深层蛋糕成为社会辩论的一个话题。图像水印允许负责任的模型自动检测和标记其AI生成的内容,从而减轻危害。然而,图像水印中的当前最新方法仍然容易受到伪造和去除攻击的影响。这种脆弱性发生在部分原因是水印会扭曲产生的图像的分布,无意中揭示了有关水印技术的信息。在这项工作中,我们首先根据扩散模型的初始噪声展示了一种无误的水印方法。但是,检测水印需要将图像重建的初始噪声与所有先前使用的初始噪声进行比较。为了减轻这些问题,我们提出了一个两阶段的水印框架,以进行有效检测。在生成期间,我们通过生成的傅立叶模式增加了初始噪声,以嵌入有关我们使用的初始噪声组的信息。为了检测,我们(i)检索相关的噪声组,以及(ii)在给定组中搜索可能与我们的图像相匹配的初始噪声。这种水印方法实现了对大量攻击的伪造的最新鲁棒性和去除。