摘要:联合学习(FL)是一种允许多个参与者协作训练深神经网络(DNN)的技术,而无需集中数据。除其他优点外,它具有保护隐私性的财产,使其对在敏感环境(例如医疗保健或军方)的应用中具有吸引力。尽管没有明确交换数据,但培训程序需要共享有关参与者模型的信息。这使各个模型容易受到恶意演员的盗窃或未经授权的分配的影响。为了解决机器学习(ML)的所有权保护问题,在过去的五年中已经开发了DNN水印方法。大多数现有的作品都以集中式的方式着重于水印,但仅针对FL及其独特的限制设计了一些方法。在本文中,我们概述了联合学习水印的最新进步,阐明了这一领域中出现的新挑战和机遇。
主要关键词