已启动一项任务,以开发一种允许常规和参数波束形成的声纳系统传感器。可用的空间约束和所需的声功率密度要求从同一换能器阵列生成常规和参数信号。报告了大量研究,记录了为确定最佳参数主频率而进行的模拟和实验。开发了一种双模换能器来生成常规和参数信号。该换能器能够在两个相距近 2.5 个八度的独立频率上进行高功率传输,并且在两个频率上都具有宽带宽。低频换能器是传统的 Tonpliz,其头部质量由多个节点安装的高频换能器组成,这些换能器可生成参数信号。高频换能器的节点板允许低频换能器将声能传输到介质,而不会横穿高频换能器的声压释放。数据显示了这些换能器的一小部分阵列的性能。
摘要:加拿大海洋网络公司发起了一个项目,旨在评估用于有线海洋观测站的低频智能水听器的性能。找不到合适的独立校准设施,无法校准 a) 数字水听器或 b) 低至 0.01 Hz。数字水听器系统缺乏端到端校准能力是潜在的错误来源,而数字水听器校准缺乏标准则需要使用多种指标,例如 dB re µPa 2 @FS 或 dB re counts 2 /µPa 2 。由于缺乏现有的端到端校准系统,因此需要为海洋观测站设计一个低频数字水听器校准系统。本文介绍了新校准系统的设计、操作挑战和性能。该系统由活塞驱动,活塞以正弦方式对少量有限体积的水加压,参考压力传感器和被测单元浸入其中。校准组件浸入水浴中以进行热阻尼,并将水浴封闭以进行隔振。
定向频率分析和记录 (DIFAR) 声纳浮标已被海军使用数十年,可通过单个传感器为低频(小于 4 kHz)声源提供磁方位。计算技术的进步使这种声学传感器技术越来越易于使用且功能更强大。此处提供的信息旨在帮助新用户确定 DIFAR 传感器是否适合鲸鱼声学研究。须鲸的声学探测范围平均接近 20 公里,但根据条件不同,范围从 5 到 100 公里不等。DIFAR 声纳浮标到典型研究船的无线电接收范围平均为 18 公里,船上有全向天线,声纳浮标上有标准天线。对一组鲸鱼叫声分析了 DIFAR 方位精度,其中鲸鱼的轨迹是众所周知的。经发现,DIFAR 传感器的方位标准偏差为 2.1 度。可以使用 DIFAR 方位消除已知位置研究船声音的系统误差和磁偏差。DIFAR 传感器阵列需要的传感器比传统水听器阵列少,有时可以提供比传统水听器使用的“到达时间”双曲线方法更准确的源位置。与传统水听器相比,使用 DIFAR 传感器更容易定位船舶等连续声音,因为通常很难找到瞬态特征来估计使用传统水听器阵列进行双曲线定位所需的时间差。DIFAR 水听器系统非常适合露脊鲸、蓝鲸、小须鲸、长须鲸和其他须鲸的叫声,以及包括船舶在内的许多其他声源。
定向频率分析和记录 (DIFAR) 声纳浮标已被海军使用了数十年,它通过单个传感器为低频(小于 4 kHz)声源提供磁方位。计算技术的进步使这种声学传感器技术越来越易于使用且功能更强大。此处提供的信息旨在帮助新用户确定 DIFAR 传感器是否适合鲸鱼声学研究。须鲸的声学探测范围平均接近 20 公里,但根据条件不同,范围从 5 到 100 公里不等。DIFAR 声纳浮标到典型研究船的无线电接收范围平均为 18 公里,船上有全向天线,声纳浮标上有标准天线。对一组鲸鱼叫声分析了 DIFAR 方位精度,其中鲸鱼的轨迹是众所周知的。经发现,DIFAR 传感器的方位标准偏差为 2.1 度。可以使用 DIFAR 方位消除已知位置研究船声音的系统误差和磁偏差。DIFAR 传感器阵列需要的传感器比传统水听器阵列少,有时可以提供比传统水听器使用的“到达时间”双曲线方法更准确的源位置。与传统水听器相比,使用 DIFAR 传感器更容易定位船舶等连续声音,因为通常很难找到瞬态特征来估计使用传统水听器阵列进行双曲线定位所需的时间差。DIFAR 水听器系统非常适合露脊鲸、蓝鲸、小须鲸、长须鲸和其他须鲸的叫声,以及包括船舶在内的许多其他声源。
最常用的潜艇探测和定位手段之一是定向频率分析和记录 (DIFAR) 声纳浮标系统。这是一种被动系统,通过接收潜艇发射的声学信号、探测和定位潜艇来工作。近年来,DIFAR 声纳浮标还被用于追踪鲸鱼的迁徙并记录它们发出的声音( McDonald,2004;Miller,2012;Greene Jr. 等,2004)。一般而言,DIFAR 声纳浮标配备有由五个水听器组成的水声天线,这些水听器由交叉的梯度水听器对和一个附加的中央水听器组成(Mallet,1975;Salamon,2004)。类似的没有中央水听器的天线系统也是已知的(Stover,1969;Salamon 等人,2000)。在本文中,作者将证明这两种解决方案都是正确的,并且在很宽的信噪比范围内提供类似的方位精度水平。与任何被动或主动声学系统一样,方位精度受噪声影响,其中噪声在声纳浮标的工作频率范围内(10 Hz 至 3 kHz)特别高(Salamon,2004;2006;Marszal 等人,2005)。了解
(2)AN/SSQ-53E。AN/SSQ-53E DIFAR 声纳浮标集成了命令功能选择 (CFS)。通过 CFS,适当装备的 ASW 飞机可以向声纳浮标发送超高频 (UHF) 无线电命令。这些命令选择甚高频 (VHF) 操作(开/关)、水听器接收(恒定浅全向 (CSO)/正常)、自动增益控制 (AGC) 操作(开/关)和更改 RF 通道频率。CSO 是一种全向水听器,位于 45 英尺的深度设置处。它比普通的 DIFAR 水听器灵敏度低,但对躲避潜艇很有用。AGC 选择为操作员在嘈杂环境中操作提供了额外的灵活性。选择 VHF 操作和更改 RF 通道的能力增强了在沿海环境中的操作。此外,AN/SSQ-53E 还包括一个额外的 200 英尺 EFS 深度设置。
摘要 - 在北极地区,从浮冰进行的水下声学测量通常需要无人遥控水听器。目的可能是设置冰下声学跟踪范围,以避免冰站产生的噪音和/或测量传输损耗。无论如何,最好使用可靠、成本低、易于操作、坚固耐用且无需维护的系统。这些理想特性可以通过使用基于改进的声纳浮标的手动部署远程水听器系统来满足。本文介绍了在北极修改、供电和手动部署 AN/SSQ-57A 声纳浮标的具体方法和设备。这些方法和建议可以轻松扩展以用于其他类型的声纳浮标。经过修改的声纳浮标可以从远程无人站点连续传输长达 30 天,范围为 20 公里。将提供来自 APLIS 87 冰站的样本声学数据。
应答器声纳浮标导弹撞击定位系统 (DOT I SMILS),利用由任务支援飞机投放的几种类型的声纳浮标。典型的声纳浮标直径为 4.5 英寸,长度不到 36 英寸。当浮标从飞机上自由落体时,一个小型阻力降落伞会展开,并稳定浮标坠入水中。撞击时,降落伞会释放,天线会竖起。在某些浮标中,天线位于小气球(浮子)组件中,该组件由声纳浮标中压力瓶中的气体充气。气球为浮标提供额外的浮力,并保护天线免受盐雾侵害。在气球充气的同时,浮标会释放一个水听器组件,该组件下降到大约 30 英尺的深度。水听器拾取其他浮标产生的声学信号和每次再入飞行器撞击的声音,并通过甚高频无线电链路将该信息传输到上空盘旋的任务支援飞机。阵列中的某些浮标部署了第二个水听器,将声学应答器命令信号注入水中。图 1 所示的导弹撞击定位系统中使用了各种类型的浮标。测速浮标测量水中的声速,而深海温度计浮标测量温度