“ USDW被有毒的重金属,胶体或其他颗粒物污染,如果在产生和使用地下水的人,动物和植物环境中,从内部或USDW内部或进入USDW中溶解和/或动员了”;
Natacha B. B. Bernier A, *,Mark Hemer B,Nobuhito Mori C,Christian M. Oleksander Huizy,Jennifer L. Irish M,Kirezci N的Ebru,Nadao Kohno,Jun-Whan Lee P,Jun-Whan Lee P,Kathleen LMartha Marcos S,Reza Marsooli S,Ariadna Oliva U,Menendez Menendez,Moghimi Saeed AB,Val Swail,Tomoya C
NatháliaWeber,温室气体创新研究中心(RCGI),圣保罗大学,圣保罗大学,巴西,巴西,圣保罗大学,圣保罗大学,圣保罗大学,巴西,圣保罗,巴西,巴西·保洛,巴西·索拉·B·迪奥利维拉圣保罗大学,圣保罗大学,巴西圣保罗大学和地球科学研究所,圣保罗大学,圣保罗大学,巴西·艾伦·卡瓦拉里,圣保罗大学理工学院,圣保罗大学,巴西·保洛大学,巴西·伊萨贝拉·摩尔巴赫,巴西,巴西CCS Brazil,Sao Innov for Brazil for for Brazy for for green for for for for for for for for for for for for for for for for for brazil gashouse for for for for for for for for greom for for for for for for for gromhouse for for for for for for greom for。 (RCGI),圣保罗大学,圣保罗,巴西和能源与环境研究所,圣保罗大学,圣保罗大学,巴西·朱利奥·梅尼吉尼,温室气体Innovation(RCGI)研究中心(RCGI),圣保罗大学,巴西,巴西和Paulo Paulo,Sao Paulo,Sao Paulo,Sao Paulo,Sao Paulo,Sao Paulo,Sao Paulo,Sao Paulo <NatháliaWeber,温室气体创新研究中心(RCGI),圣保罗大学,圣保罗大学,巴西,巴西,圣保罗大学,圣保罗大学,圣保罗大学,巴西,圣保罗,巴西,巴西·保洛,巴西·索拉·B·迪奥利维拉圣保罗大学,圣保罗大学,巴西圣保罗大学和地球科学研究所,圣保罗大学,圣保罗大学,巴西·艾伦·卡瓦拉里,圣保罗大学理工学院,圣保罗大学,巴西·保洛大学,巴西·伊萨贝拉·摩尔巴赫,巴西,巴西CCS Brazil,Sao Innov for Brazil for for Brazy for for green for for for for for for for for for for for for for for for for for brazil gashouse for for for for for for for for greom for for for for for for for gromhouse for for for for for for greom for。 (RCGI),圣保罗大学,圣保罗,巴西和能源与环境研究所,圣保罗大学,圣保罗大学,巴西·朱利奥·梅尼吉尼,温室气体Innovation(RCGI)研究中心(RCGI),圣保罗大学,巴西,巴西和Paulo Paulo,Sao Paulo,Sao Paulo,Sao Paulo,Sao Paulo,Sao Paulo,Sao Paulo,Sao Paulo <
结构和地层捕获:CO 2以类似于天然气的方式物理捕获在不可渗透的岩石层下。残留捕获:CO 2分子由于毛细管而被困在岩石的孔隙中。溶解度捕获:地下水中溶解的CO 2形成了一种略密度的溶液,该溶液向下移动,远离大气。
Cyclonic Ross Gyre(RG)占据了南大洋的西南太平洋地区(图1A)。水文数据(Gouretski,1999),卫星高度测定(Dotto等,2018)和建模(Rickard等,2010)的证据表明,RG在海面以下3,000 m以上,延伸了约20 sv,运输于约20 sv,占据了约20 sv的运输,占主导地位的大型热热结构。水平RG范围受到南部的大陆架断裂和北部和西部的太平洋 - 北极山脊(PAR)的限制(图1A)。RG的向南流动的东部肢体受地形的强烈约束(Patmore等,2019),其位置更可变(Dotto等,2018; Sokolov&Rintoul,2009)。东部RG肢体和邻近的南极圆极电流(ACC),向Amundsen Sea(AS)架子供应温暖的圆形深水(CDW)(Jenkins等,2016; Nakayama等,2018),在到达冰架腔时,它可以快速融化。这种海洋驱动熔化的增加会导致附近的Amundsen-Bellingshausen海洋中的冰盖变薄(Depoorter等,2013; Jenkins等,2016)。
二氧化碳(CO 2)泄漏是一个紧迫的环境问题,是由各种工业过程引起的,尤其是与化石燃料的提取和存储相关的过程。在这些操作期间,CO 2的无意释放可能会对环境和人类健康产生不利影响[1]。CO 2泄漏可能是由于多个因素而发生的,包括井的完整性不足,地下存储库中的断层或断裂,以及运输管道中的失败[2-4]。在碳捕获和存储(CCS)的背景下,涉及捕获CO 2来自发电厂和工业设施的CO 2排放,并将其存储在地下,泄漏可能是由于存储现场选择不当,监测不良或注射或存储操作期间的人为错误而导致的[5]。将CO 2注入深盐水含水层为大规模和长期存储二氧化碳提供了巨大的潜力。这些含水层以其高存储能力和广泛的分布为特征,被认为是CO 2存储的最有希望的地质地层之一[6]。在世界范围内的CO 2隔离的潜在位置如图1。已经研究了波罗的海盆地中CO 2存储的不同方面,从孔隙尺度建模到基于仿真的存储评估[7,8],显示出明显的CO 2存储潜力。这些储层中存在故障和断裂在维持存储系统完整性和防止CO 2泄漏方面引入了挑战,请参见图2,其中显示了CO 2存储期间可能泄漏的概念图。先前的研究还表明,故障和断裂网络可以显着影响深盐水含水层内CO 2的迁移和遏制[2-4]。CO 2泄漏的后果是深远的,并且涵盖了环境,经济和公共卫生的影响。环境后果包括水体的酸化,
溶解气体的气体气体tritium tritium tritium tritium tritium �������农业研耗硫六氟 碳同位素 - ������农业研磨 �������农业研耗二进制混合模型模型地球化学反向模型冲积含水层含水层。
1)通常与热泵结合使用的低温含水层热能储存(LT-ates),导致冷井的注射温度在5°C和10°C之间,在温暖井中在13°C到30°C。在地下水中非常有效的直接冷却是使这种存储在经济上具有竞争力的原因。2)用于大规模热储存的高温热能储存(HT-ATS),在40至90°C之间的热井中注射温度。“冷”井的注入温度可以在5°C至60°C之间,具体取决于土壤组成以及输送系统的需求/限制。Ates需要一个适合渗透率条件的含水层,该含水层可以提取和注入地下水。要进入地下水,需要在目标含水层的穿孔屏幕上安装管井。电潜水泵(ESP)用于提取和注入地下水。ATES系统可用于每小时或每日周期。每个井的功率输出受局部地质条件和所施加温度范围的限制。与其他技术(例如储罐存储(TTE))的组合可以在任何必要的地方补偿有限的功率输出。
免责声明:本文件是作为美国政府资助工作的记录而编写的。尽管我们认为本文件包含正确的信息,但美国政府及其任何机构、加利福尼亚大学董事会及其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构或加利福尼亚大学董事会对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构或加利福尼亚大学董事会的观点和意见。
