摘要尽管最近努力收集整个太平洋岛屿地区的高分辨率多波束测深数据,但在 0-30 米深度范围内仍存在重大差距。实现这些地区的测深覆盖对于评估那里的珊瑚礁生态系统的健康状况至关重要。在这里,我们使用 WorldView-2 多光谱卫星图像和两种深度推导方法(Lyzenga,2006;Stumpf 等人,2003),将光谱辐射值与地面真实深度信息相关联,以推导夏威夷主要岛屿浅水区的深度。与 Stumpf 等人相比,我们的结果表明使用 Lyzenga (2006) 多元线性回归方法的准确性有所提高。(2003) 比率法。此外,我们通过从 Lyzenga (2006) 方法中消除线性化过程获得了更好的结果。这种改进可能与夏威夷主要岛屿内缺乏大型海草聚集有关,因为海草的存在已被证明会影响地面真实深度和光谱辐射值之间的线性关系(Doxani 等人,2012 年)。我们得出的深度产品的准确性与多光谱卫星图像的质量、地面真实数据的可用性和水深直接相关,水深 >20 米时准确性会大幅下降。我们的结果表明,在缺乏浅层(0-20 米)高分辨率测深数据的情况下,卫星得出的深度是研究浅层珊瑚礁生态系统的重要资源。
摘要尽管最近努力收集整个太平洋岛屿地区的高分辨率多波束测深数据,但在 0-30 米深度范围内仍存在重大差距。实现这些地区的测深覆盖对于评估那里的珊瑚礁生态系统的健康状况至关重要。在这里,我们使用 WorldView-2 多光谱卫星图像和两种深度推导方法(Lyzenga,2006;Stumpf 等人,2003),将光谱辐射值与地面真实深度信息相关联,以推导夏威夷主要岛屿浅水区的深度。与 Stumpf 等人相比,我们的结果表明使用 Lyzenga (2006) 多元线性回归方法的准确性有所提高。(2003) 比率法。此外,我们通过从 Lyzenga (2006) 方法中消除线性化过程获得了更好的结果。这种改进可能与夏威夷主要岛屿内缺乏大型海草聚集有关,因为海草的存在已被证明会影响地面真实深度和光谱辐射值之间的线性关系(Doxani 等人,2012 年)。我们得出的深度产品的准确性与多光谱卫星图像的质量、地面真实数据的可用性和水深直接相关,水深 >20 米时准确性会大幅下降。我们的结果表明,在缺乏浅层(0-20 米)高分辨率测深数据的情况下,卫星得出的深度是研究浅层珊瑚礁生态系统的重要资源。
由于气候变化而导致的环境状况恶化,严重影响了全球珊瑚礁的健康。因此,了解珊瑚如何对温度和/或极端太阳照射的极端水平和/或太阳照射的响应将指导该宝贵生态系统的未来保护和恢复工作。在此,我们介绍了一项研究,濒临灭绝的珊瑚Acropora cervicornis对水温(WT),光强度(LI)和水深度的季节性波动的免疫反应。免疫反应,这是一种参与光保护蛋白黑色素的生物合成的酶。为了研究这些反应,在12个月的时间内以三个月的间隔测量了视觉健康的A. cervicornis片段,深度为12 m,GFP,CYPF和PO活性。在此期间,还测量了每个深度的海水温度和光强度。使用一般线性混合模型来确定WT,LI和水深对免疫蛋白的季节性变化的影响。GFP,CYFP和PO活动在随着时间的流逝差异很大 - 在夏末/秋季秋末/秋季较低,在冬季晚期/早春较低。同样,WT和LI显着影响GFP,CYFP和PO活动。另一方面,水深仅对荧光蛋白浓度有显着影响,而不是PO活性。我们的研究表明,珊瑚可以在自然季节性爆发中调节这些关键的免疫相关蛋白质。也就是说,在较高的热和光条件下增加的几个月,同时在轻度的热和光条件下减少了几个月。
计划:改进和宣传美国的地形、地质、地球物理和水深测绘;支持矿产信息收集和针对特定商品的缓解战略分析;集中并优先考虑跨机构努力;并进行关键矿产资源评估,以支持国内矿产勘探和开发关键矿产的常规来源(通过开采矿石直接获得的矿物)、二次来源(再生材料、后工业和消费后材料)和非常规来源(从矿山尾矿、煤炭副产品、海水提取和地热盐水等来源获得的矿物)。
计划:改进和公布美国的地形、地质、地球物理和水深测绘;支持矿产信息收集和针对特定商品的缓解战略的分析;集中并优先考虑跨机构努力;并进行关键矿产资源评估,以支持国内矿产勘探和开发关键矿产的常规来源(通过开采矿石直接获得的矿物)、二次来源(回收材料、后工业和消费后材料)和非常规来源(从矿山尾矿、煤炭副产品、海水提取和地热盐水等来源获得的矿物)。
大西洋 OCS 浅水海上风电装机容量在水深小于 30 米时的总潜在装机容量为 253.2 吉瓦。按 35% 的年平均容量系数计算,年总发电量将达到 776,300 吉瓦时。如果燃气发电厂的热率为每吉瓦时 8.0 亿立方英尺,那么大西洋 OCS 浅水海上风电每年可替代的天然气用量约为 6,210,000 亿立方英尺。由于其他海洋用途和环境问题,这一总风电潜力中只有一小部分可以开发。
摘要作为新法国能源过渡法的一部分,Demosthene Research项目正在研究重用旧废弃地雷以在Picardy地区存储热能的可能性。目的是存储一个小型集体单元所需的热量,该单元对应于2,000至8,000 m 3的水量,具体取决于温度(从15°C到70°C)。一个库存显示该地区约3,700个理论上可用的站点。这些主要是干燥的矿山,或者部分被大约1 m的水深淹没。基于此水深和75%的提取比,所需的矿区约为10,000平方米。来自具有足够表面积的四十个地点,只有一个自然淹没,尽管从统计上有许多目前尚不清楚的地点。为了使这个实验地点可再现,决定选择干矿,但有足够的面积以实现人造洪水装置。从理论上讲,这代表Picardy中的一千多个站点。最有趣的是Saint-Maximin的旧石灰石矿,可以建造一个密封的盆地。在安装实验地下热量储能盆地之前,对热力学和热液行为进行了建模。目的是优化将用于监测盆地的各种传感器的位置,并通过热变化预测壁上诱导的未来变形。A 100 m 3盆地用衬里密封,并配有18个传感器,以测量温度,湿度和应变。这些传感器允许监测存储的水,岩壁和周围气氛。此设备现在必须运行六个月,即一个完整的加热冷却周期及其结果将进行分析。
图 1:(a) 带有水深测量的模型域地图。白线表示陆架断层的位置,定义为 200 米等深线,北部和南部边界处有闸门。红十字表示闸门的起点。SH:设得兰群岛,NT:挪威海沟,SK:斯卡格拉克海峡,NS:北海,GB:德国湾,SB:南湾。(b) 模型水平分辨率地图,叠加了 2001-2010 年期间模型模拟的平均电流场。地图限制为 100
在复杂环境中快速识别和管理不可预测的威胁需要下一代态势感知工具,这些工具可在配备 Telephonics SHARC 软件的 RDR-1700B(V)1 和 RDR- 1700G(V)2 雷达型号上使用。SHARC 软件以 RDR-1700B 系列的广域检测能力为基础,满足了现实世界监视任务中的关键需求,即对目标轨迹进行分类、过滤、标记和存档,快速识别威胁以进行成像和分类,并通过高分辨率表面和水深地图底层提供情境背景。此外,SHARC 软件还将船舶的 AIS 和雷达信息与背景对齐。
4.数据采集方法 在第 3 节中,我们描述了那些对于确定许多底栖和近岸物种的分布和丰度非常重要的物理和生物物理参数,并且必须围绕这些参数组织栖息地分类系统。因此,要应用分类方案,必须以适当的比例和分辨率从感兴趣的区域获取这些参数的数据。在这里,我们回顾了当前用于获取栖息地数据的方法以及有望增加浅海环境中调查覆盖率和数据分辨率的新技术。我们主要关注适用于收集水深、基质类型、粗糙度、坡度和坡向等各种比例和分辨率数据的方法。