摘要:世界上每九人中就有一人面临饥饿,每八人中就有一人患有肥胖症,所有人都面临着气候变化的威胁。水稻是世界上大多数人口的重要谷物作物和主食,但水稻生产面临着气候变化、全球人口增长以及全球饥饿和肥胖同时流行的挑战。这些问题至少可以部分通过转基因水稻得到解决。基因工程在过去一个世纪里得到了很大的发展。转基因水稻已被 ISAAA 的转基因批准数据库批准为可供人类安全食用。开发这种水稻的目的是提高稻米的产量、营养价值和食品安全性。这篇评论文章总结了转基因水稻的研究数据及其在改善营养不良双重负担方面的潜在作用,主要通过提高营养质量以及谷粒大小和产量。它还回顾了转基因水稻中产生的某些生物活性成分的潜在健康益处。此外,本文还讨论了应对这些挑战的潜在解决方案,包括使用转基因作物和鉴定与谷粒重量和营养品质有关的数量性状基因座。具体而言,已鉴定出一种位于 6 号染色体上的数量性状基因座,该基因座通过 Kasa 等位基因扩增,导致谷粒重量和棕色谷粒大幅增加。在水稻中,过量表达一种特定基因 Oryza sativa 质膜 H+-ATPase1 可改善根部对铵的吸收和同化,并增强叶片在光照下的气孔开放和光合作用速率。克隆研究也使鉴定与谷粒重量和营养品质有关的几个潜在数量性状基因座成为可能。最后,本文讨论了气候变化日益严重的威胁,如甲烷-一氧化二氮排放和全球变暖,以及如何通过修改水管理技术,利用转基因水稻显著改善这些威胁。总之,这篇综合评论对于谷物生物活性成分领域和试图通过基因工程生产高质量功能性谷物食品的食品工业具有特别重要的意义。
第一部分 11.00 尊敬的总理抵达 11.05 向孟加拉国国父画像致敬 11.10 释放挂绳和气球 11.15 孟加拉国国父 - 皮埃尔·特鲁多农业技术中心揭幕 11.20 参观孟加拉国水稻研究所的创新成果第二部分 11.45 主宾抵达活动现场 11.46 抒情歌曲“Dhankavya” 11.56 欢迎致辞 孟加拉国水稻研究所所长 Md. Shajahan Kabir 博士 12.00 播放纪录片《孟加拉国水稻研究所 50 年的辉煌与成功》 12.05 特邀嘉宾致辞 加拿大全球粮食安全研究所首席执行官兼执行董事 Steven Webb 博士 菲律宾国际水稻研究所所长 Jean Balié 博士 孟加拉国农业研究理事会执行主席 Sheikh Mohammad Bokhtiar 博士农业部秘书长瓦希达·阿克特 (Wahida Akter) 12.25 农业部部长穆罕默德·阿卜杜勒·拉扎克 (Muhammad Abdur Razzaque) 议员致辞 12.35 向总理赠送徽章 12.40 为孟加拉国水稻研究所和孟加拉国农业研究委员会的 5 本书籍揭幕 12.45 孟加拉人民共和国政府首席嘉宾谢赫·哈西娜 (Sheikh Hasina) 议员致辞
抽象转座元素(TES)是基因组变异性的重要来源。在这里,我们通过使用来自Oryza Sativa SSP的208个品种的表达数据来分析了它们对水稻基因表达变异性的贡献。indica和O. sativa ssp。Japonica亚种。我们的数据表明,插入与许多已知是水稻驯化和育种靶标的表达的变化有关。这些插入的重要部分已经存在于大米野生群中,并且在Indica和Japonica水稻种群中被差异化。总的来说,我们的结果表明,由TE诱导的信号转导基因中的表达变化很小,伴随着水稻种群的驯化和适应。
通过全基因组测序,研究了由单个母株的合子、成熟胚和未成熟胚再生的水稻植株 (Oryza sativa L.,‘Nippon-bare’) 的体细胞克隆变异。还对母株和其种子繁殖子代进行了测序。在子代中检测到了 338 个母株序列变异,平均值范围从种子繁殖植株的 9.0 到成熟胚再生体的 37.4。利用种子繁殖植株中的变异计算出的自然突变率为 1.2 × 10 –8,与之前报道的值一致。种子繁殖植株中变异的单核苷酸变异 (SNV) 比例为 91.1%,高于之前报道的 56.1%,且与再生体中的差异不显著。总体而言,如前所述,再生体中 SNV 的转换与颠换比率较低。成熟胚再生的植物的变异明显多于不同子代类型。因此,在水稻遗传操作过程中,使用受精卵和未成熟胚可以减少体细胞克隆变异。
1 杜塞尔多夫海因里希·海涅大学分子生理学研究所,德国杜塞尔多夫;2 国际水稻研究所,菲律宾洛斯巴尼奥斯;3 蒙彼利埃大学植物健康研究所 (PHIM)、IRD、CIRAD、INRAE、农业研究所,法国蒙彼利埃;4 密苏里大学邦德生命科学中心植物科学与技术部,美国哥伦比亚;5 坦桑尼亚农业研究所 (TARI)-Uyole 中心,坦桑尼亚联合共和国姆贝亚;6 国际水稻研究所,东部和南部非洲地区,肯尼亚内罗毕;7 国际水稻研究所 (IRRI),非洲区域办事处,肯尼亚内罗毕;8 唐纳德·丹佛斯植物科学中心,美国圣路易斯;9 名古屋大学转化生物分子研究所,ITbM,日本名古屋
摘要:由黑穗病菌(Ustilaginoidea virens)引起的水稻稻曲病是世界范围内最具破坏性的水稻病害之一,它导致水稻品质和产量的严重下降。作为一种空气传播的真菌病害,水稻稻曲病的早期诊断、监测其流行和病原体的分布对于控制感染尤为重要。在本研究中,开发了一种用于U. virens检测和定量的定量环介导等温扩增(q-LAMP)方法。与定量实时PCR(q-PCR)方法相比,该方法具有更高的灵敏度和效率。所使用的UV-2组物种特异性引物是根据U. virens ustiloxins生物合成基因(NCBI登录号:BR001221.1)的独特序列设计的。q-LAMP检测方法能够在60分钟内检测到6.4孢子/mL的浓度,最佳反应温度为63.4 ◦ C。此外,当纸带上只有 9 个孢子时,q-LAMP 方法甚至可以实现准确的定量检测。建立了 U. virens 检测和定量的标准曲线线性化方程 y = − 0.2866x + 13.829(x 为扩增时间,孢子数= 10 0.65y)。在田间检测应用中,该 q-LAMP 方法比传统观察方法更准确、更灵敏。总之,本研究建立了一种强大而简便的 U. virens 监测工具,为水稻稻曲病的预测预报和管理提供了宝贵的技术支持,也为精准施用杀菌剂提供了理论依据。
肉质果实形状是影响水果使用和消费者偏好的重要外部品质性状。因此,改变果实形状已成为作物改良的主要目标之一。然而,人们对果实形状调控的潜在机制了解甚少。在本综述中,我们以番茄、黄瓜和桃子为例,总结了肉质果实形状调控遗传基础的最新进展。比较分析表明,OFP-TRM(OVATE 家族蛋白 - TONNEAU1 募集基序)和 IQD(IQ67 结构域)通路可能在调节果实形状方面有所保留,它们主要通过调节肉质果实物种之间的细胞分裂模式。有趣的是,发现 FRUITFULL(FUL1)、CRABS CLAW(CRC)和 1-氨基环丙烷-1-羧酸合酶 2(ACS2)的黄瓜同源物可调节果实伸长。我们还概述了拟南芥和水稻中 OFP-TRM 和 IQD 途径介导的果实形状调控的最新进展,并提出 OFP-TRM 途径和 IQD 途径通过整合植物激素(包括油菜素类固醇、赤霉酸和生长素)和微管组织来协调调节果实形状。此外,还展示了 OFP、TRM 和 IQD 家族成员的功能冗余和分歧。本综述概述了目前关于果实形状调控的知识,并讨论了未来研究中需要解决的可能机制。
水稻是我国的主要粮食作物,对国际粮食稳定有着重要贡献。随着水稻基因组测序、生物信息学和转基因技术的进步,我国科研人员发现了控制水稻产量的新基因,解析了遗传调控网络,建立了分子设计育种新框架,取得了许多变革性的成果。本文介绍了近年来我国在水稻产量性状研究方面的一些突破和分子设计育种方面的一系列成果,综述了产量性状相关功能基因的鉴定与克隆以及水稻功能基因的分子标记开发,以期对下一步的分子设计育种工作及进一步提高水稻产量起到借鉴作用。
通过全基因组测序,研究了由单个母株的合子、成熟胚和未成熟胚再生的水稻植株 (Oryza sativa L.,‘Nippon-bare’) 的体细胞克隆变异。还对母株和种子繁殖子代进行了测序。在子代中检测到了 338 个母株序列变异,平均值范围从种子繁殖植株的 9.0 到成熟胚再生体的 37.4。利用种子繁殖植株中的变异计算出的自然突变率为 1.2 × 10 –8,与之前报道的值一致。种子繁殖植株中变异的单核苷酸变异 (SNV) 比例为 91.1%,高于之前报道的 56.1%,且与再生体中的差异不显著。总体而言,如前所述,再生体中 SNV 的转换与颠换比率较低。成熟胚再生的植物的变异明显多于不同子代类型。因此,在水稻遗传操作过程中,使用受精卵和未成熟胚可以减少体细胞克隆变异。
植物通过整合了各种植物的信号通路,发展了复杂的机制,以协调其生长和压力反应。然而,精确的分子机制,在植物激素信号通路的整齐整合的精确分子机制基本上是晦涩的。在这项研究中,我们发现大米(oryza sativa)短interdes1(shi1)突变体表现出典型的生长素缺陷的根源发育和力觉响应,铜氨基固醇(BR)缺陷的植物构建和粒度以及增强的Abscisic Acid Acid Acid Acid Acid Accisic Adived Drought耐用的植物耐受性。此外,我们发现SHI1突变体对生长素和BR治疗也是不良的,但对ABA高度敏感。此外,我们表明OSSHI1通过激活Osyuccas和D11的表达来促进生长素和BR的生物合成,同时通过诱导OSNAC2的表达来抑制ABA信号传导,OSNAC2的表达编码ABA信号的抑制剂。此外,我们证明了3类转录因子,生长素反应因子19(OSARF19),叶片和分er角增加了控制器(LIC),以及OSZIP26和OSZIP86,直接与Osshi1的启动子结合,并分别调节其对响应的响应,分别对ABR,BR和ABA的反应。总的来说,我们的结果揭示了一个以OSSHI1为中心的转录调节枢纽,该枢纽策划了多个植物激素信号通路的整合和自喂后调节,以协调植物的生长和压力适应。