摘要:浸泡是制作速度的重要步骤。tempeh发酵通常涉及能够生产蛋白酶以分解蛋白质分子中肽键的自然存在。这项研究评估了在天然发酵过程中浸泡在蒸馏水中的12、24、36和48小时的蛋白质和氨基酸含量。在这项研究中,使用Kjeldahl技术确定粗蛋白,从蛋白质水解中确定氨基酸,并列举蛋白水解细菌以进行总板计数,并使用Vitek 2.0紧凑型系统进一步识别。结果表明,浸泡的千斤顶豆具有较高的蛋白质和氨基酸含量,人体需要16个必需氨基酸。浸泡的千斤顶豆的蛋白质含量在24和36 h时为35%到32%,48小时的蛋白质含量不等。浸泡12小时产生的氨基酸浓度最高,为38,000 mg/kg l-谷氨酸,最低14,000 mg/kg l-丙啉。七个孤立的细菌在脱脂牛奶琼脂上显示出蛋白水解活性,其菌落周围的透明区域为3.00 mm至10.65 mm。鉴定出的细菌是pediocococcus pentococcus pentocococcus,stenorophomonas一个元素粒细胞,sakazakii和klebsiella pneumonia ssp。总而言之,乳酸杆菌科和肠杆菌科是坦佩发酵过程中的主要细菌,表明在浸泡条件下,这些微叶酸盐之间的协同相互作用是它们在这种敌对环境中生存的一部分。
摘要我们计算研究Zika NS3解旋酶,这是一种使用ATP水解能进行核酸重塑的生物运动。通过经典和QM/MM模拟,我们探索了图案V的构象局势,该构象形象V连接了用于ATP水解和核酸结合的活性位点的保守环。由元磷酸组形成引发的ATP水解涉及由GLU286质子抽象激活的水分子的亲核攻击。基元V氢键通过Gly415骨干NH组与该水键合,从而有助于水解。当无机磷酸盐从镁离子的配位壳移开时,释放自由能,自由能被释放出来,从而诱导了基序V的构象构象构象构象构象形态的显着转移,以在Gly415 NH和Glu285之间建立氢键。Zika NS3解旋酶充当棘轮生物电动机,其基序V转变由Gly415的γ-磷酸在ATPase位点引导。
[3]。微藻生物量中碳水化合物的发酵是生产生物燃料的替代途径,尤其是因为某些微藻物种的淀粉,葡萄糖和/或纤维素在干重的基础上超过50%,没有木质素含量[4,5]。已经开发出各种方法将藻类生物量碳水化合物水解成可发酵的化合物[2,6,7]。尽管碳水化合物占干重的40%或更高的微藻生物量,但藻类水解物通常含有低糖浓度。例如,使用H 2 SO 4对小球藻生物量的水解产生了15 g/L的可发酵糖[8]。因此,对糖浓度相对较低的水解物必须有效,以实现高产量,糖转化率和生产力。具有游离细胞的传统发酵在可以实现的糖转换的体积生产率和程度上受到限制。批处理发酵的糖转化率很高,但体积生产力较低,尤其是当考虑排水,清洁和填充生物参与者的时间时。饲料批次发酵可以提高生产率,但仅适用于具有高糖浓度的原料,而生物质水解物并非总是可能的。最后,与游离细胞的连续培养的体积产生性受到生物催化剂的特异性生长速率的限制,尤其是对于糖浓度较低的水解产物。当使用游离细胞时,连续培养中的糖含量也很低。由于细胞保留在反应堆内,与生长速率的解耦操作相比,固定的细胞技术具有比使用自由细胞的固定型生产率明显更高的体积生产率[9,10]。细胞固定还可以促进其他策略,以提高糖至产品转化的产量(碳转化效率)以及下游加工的成本较低[11]。不合理的酵母细胞。
发酵技术,基因工程和酶应用技术的进步增加了酶的使用。酶。蛋白水解细菌或蛋白酶产生酶的细菌在含有蛋白质的食物或植物中,例如棕色海藻氢氯拉斯sp。这项研究旨在获得与海洋藻类氢化层相关的产生蛋白酶的细菌。从瓦卡托比地区霍加岛附近的水域,并根据其16S rRNA基因序列识别生物体。用营养琼脂(NA)培养基对细菌分离,而在脱脂牛奶琼脂(SMA)培养基上选择蛋白水解细菌。 然后使用27F-1492R引物的PCR(聚合酶链反应)方法鉴定出在SMA培养基上产生蛋白水解区域的细菌分离株,以靶向16S rRNA基因。 基于隔离结果,有3个独特的细菌菌落可以从藻类样品和编码HIHA-1培养到HIHA-3(HIHA代表Hoga Island Hyleolathrus acroalgae)。 SMA培养基上产生蛋白酶的细菌的选择过程导致1个分离蛋白水解细菌,即HIHA-1。 通过PCR在HIHA-1分离株上的分子鉴定导致电泳凝胶大小〜1500bp的单个DNA带。 测序结果显示了DNA序列,大小为1421bp,与aestuarii aestuarii菌株TF-16(同源性水平为99,93%)的大小相似性最高。 获得并确定为Aestuarii菌株HIHA-1。,而在脱脂牛奶琼脂(SMA)培养基上选择蛋白水解细菌。然后使用27F-1492R引物的PCR(聚合酶链反应)方法鉴定出在SMA培养基上产生蛋白水解区域的细菌分离株,以靶向16S rRNA基因。基于隔离结果,有3个独特的细菌菌落可以从藻类样品和编码HIHA-1培养到HIHA-3(HIHA代表Hoga Island Hyleolathrus acroalgae)。SMA培养基上产生蛋白酶的细菌的选择过程导致1个分离蛋白水解细菌,即HIHA-1。通过PCR在HIHA-1分离株上的分子鉴定导致电泳凝胶大小〜1500bp的单个DNA带。 测序结果显示了DNA序列,大小为1421bp,与aestuarii aestuarii菌株TF-16(同源性水平为99,93%)的大小相似性最高。 获得并确定为Aestuarii菌株HIHA-1。通过PCR在HIHA-1分离株上的分子鉴定导致电泳凝胶大小〜1500bp的单个DNA带。测序结果显示了DNA序列,大小为1421bp,与aestuarii aestuarii菌株TF-16(同源性水平为99,93%)的大小相似性最高。并确定为Aestuarii菌株HIHA-1。总而言之,蛋白水解细菌分离株HIHA-1与海洋棕色藻类氢层sp。
摘要:没有由人类产生的肽酶消化的免疫反应性麸质肽可以触发乳糜泻,过敏和非粘液性麸质超敏反应。这项研究的目的是评估选定的益生菌菌株水解免疫反应性麦醇溶蛋白肽的能力,并在最有效菌株的基因组中鉴定肽酶编码基因。使用商业酶和通过G12和R5免疫酶测定的商业酶和细菌肽酶制剂在一或两步水解后测量残留的麦醇溶蛋白免疫反应性。肽酶制剂显着降低了麦芽糖二二肽肽的免疫反应性,包括33-MER,包括33-Mer和该ect的情况。在L. casei Lc130和L. paracasei LPC100的硅基基因组分析中,揭示了编码肽酶的基因,具有在富含脯氨酸的肽中水解键的潜力。这表明L. casei LC130,L。paracasei LPC100和S. hyterphilus ST250,尤其是在用作混合物时,具有水解免疫反应性胶质素肽的能力,并且可以在有限的无麸质饮食上对患者施用,以帮助治疗肠胃疾病。
嵌段共聚物“呼吸图”模板中的定向自组装,然后进行软水解-缩合:迈向合成仿生二氧化硅硅藻外骨骼的一步 Antoine Aynard, a,b Laurence Pessoni, a,b Laurent Billon a,b * a Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques & de PhysicoChimie pour l'Environnement & les Matériaux, UMR5254, 64000, PAU, France b 仿生材料组:功能与自组装,E2S UPPA, Helioparc, 2 avenue Angot, 64053, PAU, France。 *通讯作者。电子邮件地址:laurent.billon@univ-pau.fr 关键词:自组装、呼吸图、自下而上的过程、溶胶-凝胶、仿生材料摘要
乳腺癌 (BC) 是一种高度异质性的乳腺组织肿瘤,导致全球大量女性死亡。近 70% 和 20% 的 BC 病例分别为雌激素受体 α 阳性 (ERα+) 和人表皮生长因子受体 2 阳性 (HER2+);因此,ER 和 HER2 靶向疗法已用于 BC 治疗。然而,据报道这些疗法产生了耐药性,表明需要开发新的治疗策略。蛋白水解靶向嵌合体 (PROTAC) 是一种新的、有前途的治疗工具,具有双模块结构:一个模块允许特异性结合靶蛋白,另一个模块允许有效降解这些靶蛋白。本文讨论了 PROTAC 及其在控制 ERα 和 HER2+ BC 进展方面的潜力。
1实验室研发制药和化妆品,帕尔街联邦大学,奥古斯托·科里亚(Street Augusto Correa)01,BeléM66075-110,巴西; lastecanella@ufpa.br(L.A.S.); antoniopaulo.ribeirobitencourt@unipr.it(A.P.R.B.); carrera@ufpa.br(J.O.C.S.J.)2帕尔马大学帕尔科地区的食品与药物系德莱·斯科兹27/A,43124意大利帕尔马; gustavo.vaz@unipr.it(g.r.v.); eride.quarta@studenti.unipr.it(e.q。)3纳米技术实验室适用于健康科学研究生课程的纳米技术实验室,里约热内卢联邦大学,AV。意大利,第8公里,里奥格兰德96210-900,巴西4食品和药物系,Plumestars SRL,C/O parco scienze 27/a,43124,43124,意大利帕尔马43124,意大利帕尔马5信件:Alessandra.rossi@unipr.it;电话。: +39-0521-905084†这些作者对这项工作也同样贡献。
葡萄枝是一种富含碳水化合物的农业废弃物,可被视为一种有前途的能源替代品。这项研究的目的是提出一种利用这种残留生物质的工艺策略,包括将可溶性糖化学转化为糠醛,将纤维素葡萄糖生物转化为 H 2 。对葡萄枝进行蒸汽爆破预处理,其操作条件优化为 190 ◦ C 和 1.6% H 2 SO 4 浸渍生物质。这些预处理条件允许在预水解物中回收 68.2% 的半纤维素糖和 18.2% 的葡萄糖,并通过酶水解回收 45.3% 的葡萄糖。因此,在优化条件下获得的预处理固体进行酶水解,生成的浆液被丁酸梭菌用作底物,发酵成生物氢(830.7 mL/L,每100 g生葡萄枝产量为3550 mL)和有机酸(1495.3 mg乙酸/L和1726.8 mg丁酸/L)。以糠醛生产为基础,在202 ◦ C的微波反应器中优化预水解物中木糖的化学转化,使用0.195 M FeCl 3作为催化剂,糠醛产量为15 g/L,产率为73%。