°C 摄氏度 °F 华氏度 µg/g 微克每克 µg/L 微克每升 µPa 微帕斯卡 µPa 2 -s 微帕斯卡平方秒 AA 空对空 AAV 两栖突击车 AAW 防空战 ac。英亩 ACM 空战机动 ADEX 防空演习 AEP 听觉诱发电位 AFB 空军基地 AFI 空军指令 AFPMB 武装部队害虫管理委员会 AG 空对地 AG 气枪 AGL 高于地面 AIC 空中拦截控制 ALMDS 机载激光水雷探测系统 AMW 两栖作战陆军 美国陆军 AS 空对地 AS 潜艇补给舰 ASUW 反水面作战 ASW 反潜作战 ATCAA 空中交通管制指定空域 AUTEC 大西洋海底测试和评估中心 BaCrO 4 铬酸钡 BAMS 广域海事监视 BIA 生物重要区域 BO 生物学观点 BOMBEX 轰炸演习 BNM 广播航海通告 BRF 行为反应函数 C 摄氏度 C-4 成分 4 CD 稠度测定 CEE 受控暴露实验 CFR 联邦法规 CG 巡洋舰 CH 4甲烷 CHAFFEX 箔条演习 CITES 濒危野生动植物种国际贸易公约 CJMT 北马里亚纳群岛联邦联合军事训练 CLZ 飞行器着陆区
°C 摄氏度 °F 华氏度 µg/g 微克每克 µg/L 微克每升 µPa 微帕斯卡 µPa 2 -s 微帕斯卡平方秒 AA 空对空 AAV 两栖突击车 AAW 防空战 ac。英亩 ACM 空战机动 ADEX 防空演习 AEP 听觉诱发电位 AFB 空军基地 AFI 空军指令 AFPMB 武装部队害虫管理委员会 AG 空对地 AG 气枪 AGL 高于地面 AIC 空中拦截控制 ALMDS 机载激光水雷探测系统 AMW 两栖作战陆军 美国陆军 AS 空对地 AS 潜艇补给舰 ASUW 反水面作战 ASW 反潜作战 ATCAA 空中交通管制指定空域 AUTEC 大西洋海底测试和评估中心 BaCrO 4 铬酸钡 BAMS 广域海事监视 BIA 生物重要区域 BO 生物学观点 BOMBEX 轰炸演习 BNM 广播航海通告 BRF 行为反应函数 C 摄氏度 C-4 成分 4 CD 稠度测定 CEE 受控暴露实验 CFR 联邦法规 CG 巡洋舰 CH 4甲烷 CHAFFEX 箔条演习 CITES 濒危野生动植物种国际贸易公约 CJMT 北马里亚纳群岛联邦联合军事训练 CLZ 飞行器着陆区
本研究的目的是探索和实验验证复合材料补片在防止裂纹扩展和延长铝和钢船舶结构寿命方面的应用。复合材料补片通过降低裂纹尖端区域的应力起到裂纹抑制器的作用。目前存在预测复合材料补片配置有效性的分析能力,但这种分析需要特定的理想化和假设,必须通过实验验证才能将这项技术应用于实践。因此,该项目有助于将该技术开发为一种有用且可靠的船舶板层断裂修复工具,并力求促进其在工业上的接受和实施。该项目的资金由船舶结构委员会通过海军水面作战中心卡德罗克分部提供,随后由 BMT 设计师和规划师提供给密歇根大学。研究了两种配置。首先研究了长度为 18.0 英寸、宽度为 12.0 英寸、厚度为 0.25 英寸的钢板,中跨处有 3.0 英寸的初始裂纹,没有使用钢筋。然后使用双面加固检查了其他几何形状相似的板。在板的一端施加了 2.0 到 50.0 千磅之间的周期性载荷。在进行这些测试之前,进行了简单的拉伸强度测试,以确定复合材料补片的材料特性和 s
本研究的目的是探索和实验验证复合材料补片在防止裂纹扩展和延长铝和钢船舶结构寿命方面的应用。复合材料补片通过降低裂纹尖端区域的应力起到裂纹抑制器的作用。目前存在预测复合材料补片配置有效性的分析能力,但这种分析需要特定的理想化和假设,必须通过实验验证才能将这项技术应用于实践。因此,该项目有助于将该技术开发为一种有用且可靠的船舶板层断裂修复工具,并力求促进其在工业上的接受和实施。该项目的资金由船舶结构委员会通过海军水面作战中心卡德罗克分部提供,随后由 BMT 设计师和规划师提供给密歇根大学。研究了两种配置。首先研究了长度为 18.0 英寸、宽度为 12.0 英寸、厚度为 0.25 英寸的钢板,中跨处有 3.0 英寸的初始裂纹,没有使用钢筋。然后使用双面加固检查了其他几何形状相似的板。在板的一端施加了 2.0 到 50.0 千磅之间的周期性载荷。在进行这些测试之前,进行了简单的拉伸强度测试,以确定复合材料补片的材料特性和 s
• 海军医学作战训练司令部 (NMOTC),佛罗里达州彭萨科拉 • NMOTC 支队阿拉巴马州拉克堡 • NMOTC 支队俄亥俄州赖特-帕特森空军基地 • 海军航空医学研究所 (NAMI),佛罗里达州彭萨科拉 • 海军远征医疗训练学院 (NEMTI),加利福尼亚州彭德尔顿营 • 海军创伤训练中心 (NTTC) 洛杉矶县 + 南加州大学医疗中心 • 海军医疗队,宾夕法尼亚长老会医疗中心 • 海军医院医务兵创伤训练 (HMTT):俄亥俄州克利夫兰、伊利诺伊州大湖区、佛罗里达州杰克逊维尔和北卡罗来纳州罗利 • 海军医疗训练支援司令部 (NMTSC),德克萨斯州圣安东尼奥 • 海军医疗领导和专业发展司令部 (NMLPDC),马里兰州贝塞斯达 • 海军特种作战医疗学院 (NSOMI),北卡罗来纳州布拉格堡 • 海军生存训练学院 (NSTI),佛罗里达州彭萨科拉 • 航空生存训练中心:北卡罗来纳州樱桃点、佛罗里达州杰克逊维尔、加利福尼亚州勒莫尔、加利福尼亚州米拉马尔、弗吉尼亚州诺福克、马里兰州帕塔克森特河、佛罗里达州彭萨科拉和华盛顿州惠德贝岛 • 海军水下医疗研究所 (NUMI),康涅狄格州格罗顿 • 水面作战医疗研究所 (SWMI),加利福尼亚州圣地亚哥
摘要:本文从德国不来梅的 Lürssen 造船厂的角度,对当前和未来海军建造计划的技术趋势进行了深入分析。许多西欧和海外海军认识到不断变化的作战要求,重点关注水面作战舰艇,例如具有先进能力的轻型护卫舰大小的舰艇,以满足近海作战的特定需求。根据这些新要求,本文概述了轻型护卫舰和护卫舰大小舰艇的当前和未来设计技术。其中包括不同类型的平台及其在近海作战中预期使用的特定优势和能力。此外,还广泛讨论了减少舰艇特征以提高生存能力的措施。关于在近海环境中具有足够的适航性、机动性、速度和续航能力(特性),本文还扩展了新推进系统的开发和特性,强调了所有系统组件总体上需要高度自动化。关于现代作战系统技术的讨论再次强调了需要采用具有开放系统架构的模块化和灵活系统设计。另一个主题是尽可能高水平的系统自动化,以减少 CIC 中的人员数量并确保在威胁情况下立即做出反应。在此背景下,所有传感器和武器的完全集成以及经过验证的操作软件是基本技术要求。最后,本文评论了当前建造理念的一些经济方面,其中涉及减少船员、降低成本、中期改装的潜在能力和增长潜力的可能性。
摘要:本文从德国不来梅的 Lürssen 造船厂的角度,对当前和未来海军建造计划的技术趋势进行了深入分析。许多西欧和海外海军认识到不断变化的作战要求,重点关注水面作战舰艇,例如具有先进能力的轻型护卫舰大小的舰艇,以满足近海作战行动的特定需求。根据这些新要求,本文概述了轻型护卫舰和护卫舰大小舰艇的当前和未来设计技术。其中包括不同类型的平台及其在近海作战中预期使用的特定优势和能力。此外,还广泛讨论了减少舰艇特征以提高生存能力的措施。关于在近海环境中具有足够的适航性、机动性、速度和续航能力(特性),本文还扩展了新推进系统的开发和特性,强调了所有系统组件总体上需要高度自动化。关于现代作战系统技术的讨论再次强调了需要采用具有开放系统架构的模块化和灵活系统设计。另一个主题是尽可能高水平的系统自动化,以减少 CIC 中的人员数量并确保在威胁情况下立即做出反应。在此背景下,所有传感器和武器的完全集成以及经过验证的操作软件是必不可少的技术要求。最后,本文评论了当前建造理念的一些经济方面,从而涉及减少船员、降低成本、中期改装的潜在能力和增长潜力的可能性。
开发和收购 Brett Seidle 博士担任海军研究、开发和收购 (ASN RD&A) 助理部长的首席文职副手。在此职位上,他负责监督和制定海军和海军陆战队在造船、航空、太空、武器系统和通信系统方面的研究、开发和收购/维持计划。ASN RD&A 的职责包括监督 100,000 多名员工,并管理海军部全球收购系统的运营,每年的义务超过 1550 亿美元。他曾担任 ASN (RD&A) 下属的海军研究、开发、测试和工程 (DASN (RDT&E)) 副助理部长,负责对与 RDT&E 预算活动、科学和工程、高级研究与开发、原型设计和实验以及测试和评估有关的所有事务进行行政监督。他还负责监督和管理海军研究与发展机构部,该机构包括海军实验室、作战中心、海军研究办公室、海军研究生院和 5 个大学附属研究中心。他曾担任海军水面作战中心 (NSWC) 和海军水下作战中心 (NUWC) 的执行主任,该中心拥有 29,000 多名员工。NAVSEA 作战中心约占海军工程和科学专业知识的 30%,由 10 个梯队(四级作战中心部门和两个梯队五级指挥部)组成。在 NAVSEA 任职期间,Seidle 博士还被调任 21-22 财年 SEA 04 工业运营执行主任,领导和指导国家公共和私人造船厂的维护、现代化和新建工程,负责管理超过 37,000 名员工。
AAP 陆军弹药厂 ADNTs 氨基二硝基甲苯异构体 AP 高氯酸铵 APE 弹药 特殊设备 BRAC 基地重新调整和关闭 °C 摄氏度 CAD 弹药驱动装置 CBF 封闭燃烧炉 CBI 清洁燃烧点火器 CDC 封闭爆轰室 cm 厘米 CO2 二氧化碳 DAVINCH 真空集成室中弹药的爆炸 DDESB 国防部爆炸物安全委员会 demil 非军事化 DMMs 废弃军用弹药 DNTs 二硝基甲苯异构体 DoD 国防部 EDS 爆炸物销毁系统 EM 含能材料 EMCW 含能材料 受污染废物 EMS 环境管理支持公司 EPA 美国环境保护署 爆炸物 D 苦味酸铵 °F 华氏度 ft 英尺 FUDS 以前使用的国防基地 FY 财政年度 g 克 HMX 1,3,5,7-八氢-1,3,5,7-四硝基四氮唑 in 英寸 ICM 改进型常规弹药 iSCWO 工业超临界水氧化 kg 千克 lb 磅 LRIP 低速率初始生产 MDAS 记录为安全的材料 MDEH 记录为爆炸危险的材料 MIDAS 弹药物品处置行动系统 m 米 mm 毫米 MPPEH 可能存在爆炸危险的材料 MTU 移动处理装置 NCP 国家石油和危险物质污染应急计划 NDMA N-亚硝基二甲胺 NEW 爆炸物净重 NOx 一氧化二氮 NPL 国家优先事项清单 NSWC 海军水面作战中心
海军系统工程与后勤局执行主任 Thomas Perotti 先生担任海军海上系统司令部 (NAVSEA) 工程与后勤局 (SEA 05) 执行主任。在此职位上,他提供行政领导,执行海军在所有舰艇、潜艇、航空母舰、无人驾驶车辆和指定系统中的技术权力,确保海军舰艇和系统能够安全运行并胜任任务。Perotti 先生于 1987 年作为合作教育学生在费城海军水面作战中心 (NSWC) 开始了他的职业生涯。在费城 34 年的职业生涯中,Perotti 先生在推进和电动机械系统以及辅助系统控制方面积累了技术专长。他的专业知识包括 SUBSAFE 设计和认证、潜艇雷达和通信系统设计和维护、全尺寸推进和发电厂设计、建造和测试,以及机械和导航系统的网络安全工程。最近,佩罗蒂先生担任 NSWC 费城分部的技术总监,领导海军为哥伦比亚号、福特号和 DDG-51 Flight III 采购项目提供全尺寸机械测试能力,并领导该部门推进水面和水下航行器机械、船舶系统、设备和材料的研究、开发、测试和评估 (RDT&E)。佩罗蒂先生在技术、财务和业务规划方面表现出领导能力,为 2800 人制定了战略方向,提高了设施、工具和业务系统的能力和容量。佩罗蒂先生在德雷塞尔大学获得机械工程学士学位,在印第安纳大学获得公共管理公共事务硕士学位,并完成了计算机工程研究生课程。作为海军采购队成员,他拥有系统工程三级认证。