世界日益增长的能源需求以及向更清洁、更可持续技术的迫切转变,促使人们深入研究创新的能源存储解决方案。其中,液流电池因其提供可扩展、长时间能源存储的潜力而备受关注。该领域一个有趣的发展是将磁流体动力 (MHD) 驱动器融入盐水液流电池。这种集成提供了一种增强原位流动和提高这些能源存储系统整体效率的迷人方法。
使用非有机电解质的水锌离子电池(Azibs),主要是由于其低成本,环境友好性和内在安全性引起了持续的兴趣。然而,锌离子电池遇到了一系列严重的挑战,包括在阳极处的氢进化作用(她),表面钝化,树突形成以及有限的工作电压和相对较低的能量密度。这些因素均受到电解质中H的浓度的影响(即pH)及其在循环过程中的波动。迄今为止,仍然缺乏对电解质的pH值与Azibs所面临的挑战之间相关性的系统评估,对pH的重点审查如何影响Azibs的电化学性能,或者对可用于提高细胞效率的策略的任何集中讨论。在这篇综述中,我们强调了电解质pH和Azibs挑战之间的牢固相关性,并详细介绍了近年来与电解质添加剂,分离器修饰,界面保护层和电池系统设计有关的研究进度,并特别关注与pH控制相关的调节机制。在此基础上,我们建议未来的研究重点,并为阿齐布斯的前进发展提出建议。
由水电解产生的氢和电化学电池被广泛认为是光伏(PV)能量的长期和短期存储的主要路线。同时,PV发电的快速功率坡道和空闲周期可能会导致水分裂电化学(EC)细胞的降解。PV-EC系统中电池的启发是平稳PV功率间歇性的可行选择。值得注意的是,PV能量在昼夜循环中的扩散会降低EC细胞的功率,从而减少其过度损失。我们在理论上和实验上研究了这些潜在优势,用于在没有电源管理电子产品的情况下使用的PV,EC和电池电池(PV-EC-B)的简单平行连接组合。我们在相关的占空比中显示了PV-EC-B设备在相关的占空比中的无用操作的可行性,并探讨了PV-EC-B系统如何以较高的太阳能到氢效率运行,尽管电池造成的损失造成的损失。
5 XI,X.,Mitchell,P.,Zhong。,L。&Zou,B。,(2009年)。 基于干颗粒的粘合剂和干膜以及方法。 团结国家专利申请出版。 出版物号 :US 2009/0239127 A1 http://pdfs.oppedahl.com/us/us/20090239127.pdf 6 BMW海报在IBA 2022,Degen,F。,&Kratzig,&Kratzig (2022)。 电池生产的未来:新型生产技术的广泛基准作为工程决策的指导。 IEEE工程管理交易,1-19。 https://doi.org/10.1109/tem.2022.3144882; Li,Y.,Wu,Y.,Wang,Z.,Xu,J.,Ma,T.,Chen,L。,Li,H。,&Wu,F。(2022)。 电池和超级电容器的无溶剂干燥膜技术的进展。 今天的材料(英国基德灵顿),55,92-109。 https://doi.org/10.1016/j.mattod.2022.04.008; Lu,Y.,Zhao,C.-Z.,Yuan,H.,Hu,J.-K.,Huang,J.-Q。,&Zhang,Q. (2022)。 干电极技术,固态电池工业化中的后起之图。 物质,5(3),876–898。 https://doi.org/10.1016/j.matt.2022.01.0115 XI,X.,Mitchell,P.,Zhong。,L。&Zou,B。,(2009年)。基于干颗粒的粘合剂和干膜以及方法。团结国家专利申请出版。出版物号:US 2009/0239127 A1 http://pdfs.oppedahl.com/us/us/20090239127.pdf 6 BMW海报在IBA 2022,Degen,F。,&Kratzig,&Kratzig(2022)。电池生产的未来:新型生产技术的广泛基准作为工程决策的指导。IEEE工程管理交易,1-19。https://doi.org/10.1109/tem.2022.3144882; Li,Y.,Wu,Y.,Wang,Z.,Xu,J.,Ma,T.,Chen,L。,Li,H。,&Wu,F。(2022)。 电池和超级电容器的无溶剂干燥膜技术的进展。 今天的材料(英国基德灵顿),55,92-109。 https://doi.org/10.1016/j.mattod.2022.04.008; Lu,Y.,Zhao,C.-Z.,Yuan,H.,Hu,J.-K.,Huang,J.-Q。,&Zhang,Q. (2022)。 干电极技术,固态电池工业化中的后起之图。 物质,5(3),876–898。 https://doi.org/10.1016/j.matt.2022.01.011https://doi.org/10.1109/tem.2022.3144882; Li,Y.,Wu,Y.,Wang,Z.,Xu,J.,Ma,T.,Chen,L。,Li,H。,&Wu,F。(2022)。电池和超级电容器的无溶剂干燥膜技术的进展。今天的材料(英国基德灵顿),55,92-109。https://doi.org/10.1016/j.mattod.2022.04.008; Lu,Y.,Zhao,C.-Z.,Yuan,H.,Hu,J.-K.,Huang,J.-Q。,&Zhang,Q.https://doi.org/10.1016/j.mattod.2022.04.008; Lu,Y.,Zhao,C.-Z.,Yuan,H.,Hu,J.-K.,Huang,J.-Q。,&Zhang,Q.(2022)。干电极技术,固态电池工业化中的后起之图。物质,5(3),876–898。https://doi.org/10.1016/j.matt.2022.01.011
将固态电池(SSB)解构为物理分离的阴极和固体电解质颗粒,与回收材料的阴极和分离器的再制造也保持密集。为了应对这一挑战,我们设计了超分子有机离子(猎户座)电解质,它们是电池运行温度下的粘弹性固体( - 40°至45°C),但粘弹性液体是100°C以上的粘弹性液体,这既可以使高品质的SSB的制造和恢复生命的生命。SSB与Li金属阳极以及LFP或NMC阴极一起使用猎户座电解质,用于45°C的周期,容量较小,容量较小,容量较小。使用低温溶剂工艺,我们从电解质中分离了阴极,并证明翻新的细胞恢复了其初始容量的90%,并以另外的100个循环维持,其第二寿命的能力保留了84%。
使用具有较高能力和功率密度的电极的开发,需要对材料界面和体系结构进行全面的理解和精确控制。电化学力学在这种复杂界面的形态演化和稳定性中起着不可或缺的作用。电极材料的体积变化和电极/电解质界面的化学相互作用导致不均匀应力场和结构上不同的相互作用,从根本上影响了基本的运输和反应动力学。这种机械耦合的起源及其对降解的影响独特取决于界面特征。在这篇综述中,分析了固体 - 液界面和固体 - 固体界面上化学机械耦合和故障机制的独特性质。对于锂金属电极,表面/微结构异质性在液体电解质中的固体电解质相(SEI)稳定性(SEI)稳定性和树突生长以及接触损失和用固体电解质的纤维触摸渗透的关键作用。在复合电极方面,根据微结构耦合的电化学机电属性的关键差异被描述为基于互化和转换化学的化学属性。从液体转移到此类阴极中的固体电解质,我们强调了固体 - 固体接触对传输/机械响应,电化学性能以及诸如颗粒裂纹和分层等故障模式的显着影响。[doi:10.1115/1.4057039]最后,我们介绍了未来的研究方向的看法,以及解决实现下一代锂金属电池的潜在电化学机械挑战的机会。
在关键的矿物质方面,欧洲面临着开放式供应,确保多样化的全球市场并可持续地完成所有这些挑战的三重挑战。由于预计到2040年对绿色技术中使用的铜和锂等矿物质的需求将四倍,因此欧盟将长期依赖于第三国的原材料进口。研究表明,即使欧洲完全最大化其矿物提取,精炼和回收能力,到2030年1,仍然需要来自国外的一半以上的关键矿物质。因此,挑战是弹性地采购这些金属 - 即来自各种市场 - 负责,即核心具有很高的社会和环境标准。这就是欧洲的“战略合作伙伴关系”的新框架。在本文中,T&E分析了迄今为止的进展,并研究了欧洲成功所需要做的事情。
镍采矿和精炼带有一定的碳足迹,但是有一些解决方案可以改善这种环境影响。温室气体(GHG)的排放量在硫酸镍生产地点之间的差异很大,具体取决于多种因素,包括部署的能源和生产技术。Minviro的分析表明,可以使用可再生能源的操作,并使用水透明术技术(例如Bioheap Leaching和压力氧化)具有最低的碳足迹。具体来说,比较六个硫酸盐生产路线表明,位于加拿大和芬兰的最佳性能设施的排放水平分别比行业平均水平低70%和63%。在相对端,将乳液的矿石加工成镍铁(NPI)到哑光到硫酸镍的产生的排放量是行业平均水平的5倍,而在印度尼西亚越来越流行的高压酸浸出(HPAL)途径几乎是行业平均值的两倍。
将这两个设备共用一个电极进行组装在某些应用中会很有趣,在这些应用中,设备形状因素、便携性和能量生产和存储的分散性是比整体工艺效率更重要的特性。太阳能电化学储能 (SEES) 概念首次由 Hodes 于 1976 年提出 [1],基于光电化学电池,使用 CdSe 作为光电极、S/S − 2 作为氧化还原电解质和 Ag 2 S/Ag 作为阳极。同时报道的太阳能水分解 [2] 和高级氧化过程 [3] 取代了太阳能电化学储能系统的先驱研究,它们取得了更有希望的结果,并且太阳能的利用效率更高。然而,由于社会政治对分散和可持续能源的要求以及电化学能源电源(特别是锂离子电池)和光伏电池(如染料敏化和钙钛矿太阳能电池)的技术进步,近十年来人们对这些研究的兴趣有所增加。尽管人们重新燃起兴趣,但基于插层离子电池的 SEES 系统研究仍然很少。在 21 世纪初期,SEES 系统基于染料敏化太阳能电池。在这些系统中,电解质含有氧化还原对 I 3