摘要:通过直接沉积制备的双金属结构由于异种金属的组织和性能突然变化而存在缺陷。激光金属沉积(LMD)-电弧增材制造(WAAM)工艺可以通过沉积功能梯度材料(FGM)层(例如使用LMD的薄中间层)来缓解两种不同材料之间的缺陷,并可用于使用WAAM以较高的沉积速率和相对较低的成本制备双金属结构。本研究进行了LMD-WAAM工艺,并研究了制备的IN625-SUS304L双金属结构的微观组织。LMD-WAAM样品的FGM区的微观组织主要为细小的等轴枝晶形貌。相反,WAAM区构成了粗大的柱状枝晶形貌。LMD-WAAM样品的主要合金元素的成分随着沉积层高度而逐渐变化。 LMD-WAAM 样品的显微硬度随 Inconel 含量的增加而增加。对于 LMD-WAAM 样品,断裂发生在 25% IN625 和 0% IN625 之间的界面附近;对于 WAAM 样品,最终断裂发生在界面附近的 SUS304L 中。LMD-WAAM 样品的拉伸强度与激光功率成反比。结果表明,LMD-WAAM 样品的拉伸强度比仅使用 WAAM 制造的样品高 8%。
制造微机电系统 (MEMS) 的两种主要方法是体微加工技术和表面微加工技术。在体微加工的情况下,可移动结构的制造是通过选择性蚀刻掉结构层下面的处理基板来完成的,而在表面微加工中,一系列薄膜沉积和对堆栈中特定层(称为牺牲层)的选择性蚀刻产生最终所需的悬浮微结构。这两种 MEMS 制造方法的关键步骤是控制释放区域,从而精确定义柔顺机械结构锚 [1],如图 1 a 和 b 所示,显示了锚的底蚀。湿法或干法蚀刻工艺都可以去除牺牲层,使用前一种方法会遇到粘滞,而后一种方法会引入污染或残留物 [2]。选择牺牲层时需要考虑的重要设计因素包括:(i) 沉积膜的均匀性和厚度控制、(ii) 沉积的难易程度、(iii) 蚀刻和沉积速率、(iv) 沉积温度以及 (v) 蚀刻选择性。光刻胶由于易于蚀刻(使用氧等离子体或有机溶剂)且不会损害大多数结构材料而被用作牺牲层 [3–6]。然而,该工艺仅限于低温
摘要:本研究提出了一种混合方法,以生成用于未来的机器学习应用程序的样本数据,用于使用GMAW工艺预测定向能量沉积 - ARC(DED-ARC)中的机械性能。DED-ARC是一个增材制造过程,由于其高沉积速率高达8 kg/h,它提供了一种具有成本效益的生成3D金属零件的方式。由填充材料G4SI1(ER70 S-6)制成的添加性生产的壁结构以T 8/5冷却时间的依赖性显示。数值模拟用于将过程参数和几何特征与特定T 8/5冷却时间联系起来。具有平均焊接功率,焊接速度和几何特征(例如壁厚,层高度和热源尺寸)的输入,可以在模拟焊接过程中计算每种迭代的特定温度场。这种新颖的方法允许通过结合实验结果来生成基于实验测量的T 8/5冷却时间来生成回归方程,从而生成大型的人工数据集作为机器学习方法的训练数据。因此,使用回归方程与数值计算的t 8/5冷却时间结合使用,在这项研究中可以准确预测机械性能,仅误差仅为2.6%。因此,一小部分实验生成的数据集允许实现回归方程,从而可以精确地预测机械性能。此外,经过验证的数值焊接模拟模型适合于实现T 8/5冷却时间的准确计算,误差仅为0.3%。
摘要:在以线材为原料的各种增材制造技术中,电弧丝增材制造 (WAAM) 具有较高的材料沉积速率,但尚未在锌合金中建立应用。与传统的永久性金属生物材料相比,锌合金可用作可降解生物材料。在这项研究中,采用 WAAM 加工商用纯锌以获得近乎致密的部件,并将通过 WAAM 加工的锌获得的性能与锻造 (WR) 锌样品进行了比较。发现 WAAM (41 ± 1 HV0.3) 部件的微观结构和硬度值与 WR (35 ± 2 HV0.3) 部件的微观结构和硬度值相似。体 X 射线衍射纹理测量表明,与 WR 对应物相比,WAAM 构建物表现出重纹理微观结构,在平行于构建方向 (BD) 的方向上峰值强度约为 <3 3–6 2> 或 <0 0 0 2>。 WAAM(0.45 mmpy)和 WR(0.3 mmpy)样品在模拟体液 (SBF) 中的腐蚀速率相似。在长达 21 天的时间内,WAAM 样品在 SBF 中的重量损失测量值略高于 WR 样品。MC3T3-E1 前成骨细胞在含有 WAAM-Zn 降解产物的培养基中以类似于 WR-Zn 的方式增殖,且表现健康。这项研究证实了通过 WAAM 处理 Zn 以用于生物可吸收金属植入物的可行性。
摘要。使用Magnetron-ION溅射,将一层金属钼1–2μm厚的金属钼沉积在环境温度下惰性氩气的大气中,该硅通过Czochralski方法生长的硅单晶表面。根据实验的结果,纯Mo层厚度为2μm,通过磁控蛋白的反应性溅射从高度纯的金属钼靶中沉积到冷硅晶片底物上,厚度为1.5 mm。仅在严格定义的钼金属沉积速率对应于体积中给定的巨质压力的情况下,它们的电导率和透明度也很高。溅射目标是直径为40 mm的磁盘,厚度为3-4 mm。产品处理的技术周期包括目标清洁的阶段。在不添加氧气的情况下将金属MO靶标溅射在纯氩AR中,可以促进具有非常好的电导率的不透明金属膜的形成。X射线衍射分析具有Mo金属涂层表面的硅单晶体显示了Moleybdenum-Silicon系统中的MO3SI和MOSI.65的化合物。硅硅硅酸盐被发现在温度范围1850÷1900°C的温度范围内经历同类肌转化,而低温品种 -MOSI2具有四方结构。 -MOSI2的高温形式具有六边形结构。使用原子扫描显微镜进行研究的结果表明,硅原子的链与MO原子连接,形成沿平行X和Y轴的MO结构的棱镜形成的锯齿形。
摘要:客观T助手(Th)细胞在溃疡性结肠炎(UC)的发病机理中起着核心作用。本研究分析了通过ustekinumab(UST)的介导T细胞的变化,USTEKINUMAB(UST)是白介素12/ 23p40抗体。在UST治疗后0和8周从外周血中分离CD4 T细胞,我们通过流式细胞仪分析了CD4 T细胞的比例。在0、8和16周中获取临床信息和实验室数据。患者我们评估了13名UC患者,他们因2020年7月至2021年8月之间的诱导缓解而接受UST。结果中值部分Mayo评分从4(1-7)提高到0(0-6)(p <0.001)。在序列参数,白蛋白浓度,C反应蛋白浓度,沉积速率和富含亮氨酸的α2糖蛋白浓度中显示出明显改善的UST。对循环CD4 T细胞的流式细胞量分析表明,所有患者的UST治疗都显着降低了Th17细胞的百分比(1.85%至0.98%,p <0.0001)。Th1细胞通过UST治疗显着增加(9.52%至10.4%,p <0.05),但TH2和调节性T细胞没有显着差异。高分17亚组的部分蛋黄酱得分明显优于UST治疗后16周的低TH17亚组(0 vs. 1,p = 0.028)。用UST的结论处理降低了循环的Th17细胞,这表明这种变化可能与UC的抗炎作用有关。
摘要:使用线材的直接能量沉积 (DED) 工艺被认为是一种可以以可承受的成本生产大型部件的增材制造技术。然而,DED 工艺的高沉积速率通常伴随着较差的表面质量和固有的打印缺陷。这些缺陷会对疲劳耐久性和抗腐蚀疲劳性产生不利影响。本研究的目的是评估相变和打印缺陷对通过线材激光增材制造 (WLAM) 工艺生产的 316L 不锈钢腐蚀疲劳行为的关键影响。为了进行比较,研究了具有规则奥氏体微观结构的标准 AISI 316L 不锈钢作为对应合金。使用 X 射线微断层扫描 (CT) 分析的三维无损方法对打印缺陷的结构评估。通过光学和扫描电子显微镜评估微观结构,而通过循环动电位极化 (CCP) 分析和浸没试验评估一般电化学特性和腐蚀性能。使用旋转疲劳装置检查了在空气和模拟腐蚀环境中的疲劳耐久性。得到的结果清楚地表明,与 AISI 同类合金相比,WLAM 工艺生产的 316L 合金的腐蚀疲劳耐久性较差。这主要与 WLAM 合金的缺点有关,即具有双相微观结构(奥氏体基体和二次 delta-铁素体相)、钝化性降低以及层内孔隙率显著增加,而层内孔隙率是疲劳裂纹的应力增强因素。
抽象的激光覆层是一项公认的技术,大多数先前的数值建模工作都集中在基于粉末过程的过程中的交付和融化池行为。这项研究对优化的激光束成型进行了新的研究,以针对电线基的独特特性,其中直接底物加热以及电线和底物之间的热传递非常重要。与基于粉末的材料交付相比,该主题的值是通过基于电线的沉积过程来改善的沉积速率和致密的金属结构。线内温度分布(AISI 316不锈钢),底物的传热和直接加热(低碳钢)是通过传热模拟建模的,具有三个激光束辐照度分布。此分析确定了通常与标准高斯分布相关的局部高温区域的去除,以及均匀方形梁曲线可以提供的改进的底物加热。使用横截面光学显微镜分析了使用预位线和1.2 kW CO 2激光器的实验,以提供模型验证和改进的电线覆盖层润湿的证据,同时维持甲壳材料中有良好的抗甲基甲虫。这项工作的关键发现是从480 W/mm 2减少,在从高斯分布更改为均匀的平方分布时,需要辐照辐射,以进行有效的熔融池形成。这也可减少总能量50%。认可和讨论了能源效率,降低成本和可持续性改善的潜在提高。
摘要:镁合金因其重量轻、强度高和优异的机械性能而闻名,在许多应用中备受青睐。镁合金增材制造(Mg AM)的出现进一步提升了它们的普及度,具有无与伦比的精度、快速的生产速度、增强的设计自由度和优化的材料利用率等优势。该技术在制造复杂的几何形状、复杂的内部结构和性能定制的微结构方面具有巨大潜力,可实现突破性的应用。在本文中,我们深入研究了当前 Mg AM 采用的技术的核心工艺和关键影响因素,包括选择性激光熔化(SLM)、电子束熔化(EBM)、电弧增材制造(WAAM)、粘合剂喷射(BJ)、摩擦搅拌增材制造(FSAM)和间接增材制造(I-AM)。激光粉末床熔合(LPBF)精度高,但受到低沉积速率和腔室尺寸的限制;WAAM 为大型部件提供了成本效益、高效率和可扩展性; BJ 可实现定制部件的精确材料沉积,且具有环境效益;FSAM 可实现细晶粒尺寸、低缺陷率和精密产品的潜力;I-AM 具有较高的构建速度和工业适应性,但最近研究较少。本文试图探索 AM 未来研究的可能性和挑战。其中两个问题是如何混合不同的 AM 应用程序以及如何将互联网技术、机器学习和过程建模与 AM 集成,这是 AM 的创新突破。
摘要:与传统的湿化学合成技术相比,超高真空条件下有机网络的表面合成几乎没有控制参数。分子沉积速率和基底温度通常是唯一需要动态调整的合成变量。本文我们证明,无需专用源,仅依靠回填氢气和离子规细丝即可创造和控制真空环境中的还原条件,并且可以显著影响用于合成二维共价有机骨架(2D COF)的类 Ullmann 表面反应。使用三溴二甲基亚甲基桥连三苯胺 [(Br 3 )DTPA] 作为单体前体,我们发现原子氢 (H • ) 会严重阻碍芳基 − 芳基键的形成,我们怀疑该反应可能是限制通过表面合成产生的 2D COF 最终尺寸的一个因素。相反,我们表明,控制相对单体和氢通量可用于生产大型自组装单体、二聚体或大环六聚体岛,这些单体、二聚体或大环六聚体本身就很有趣。从单一前体表面合成低聚物可避免湿化学合成时间长和沉积源多的潜在挑战。使用扫描隧道显微镜和光谱 (STM/STS),我们表明,通过此低聚物序列的电子状态变化提供了对 2D COF(在没有原子氢的情况下合成)的深刻见解,这是单体电子结构演变的终点。关键词:扫描隧道显微镜 (STM)、共价有机骨架 (COF)、三角烯、异三角烯、DTPA、自组装单层 (SAM)