微通道散热器 (MCHS) 能够通过液体到蒸汽的相变去除极高的热通量,使其适用于各种应用,包括高功率微电子的热管理。然而,随着蒸汽气泡的增大,微通道堵塞会导致流动沸腾不稳定性,阻碍了它们的商业适用性。本研究填补了文献中关于微通道深度对流动沸腾不稳定性的影响的研究空白,包括加热表面温度和压降振荡的幅度,以及它们对传热性能的影响。实验使用介电水在多个平行微通道中沸腾,质量通量为 220 和 320 kg/m²s,壁面热通量范围为 25 kW/m² 至 338 kW/m²。研究了两种不同的 MCHS,它们由无氧铜基板制成,每种 MCHS 包含 44 个平行微通道,标称深度分别为 500 µm 和 1000 µm,标称宽度一致,均为 200 µm。使用基板上嵌入的 T 型热电偶阵列测量温度梯度,从而测量传热系数。研究结果表明,在固定壁热流条件下,增加微通道深度会导致壁温波动幅度显著增加,从而降低传热性能。此外,研究表明压降明显依赖于冷却剂流量和两种微通道尺寸。这项研究为优化 MCHS 设计以增强热管理提供了新的见解,强调了微通道深度在缓解流动沸腾不稳定性以及提高整体传热效率方面的关键作用。
项目 TRL* 集成零沸腾系统 4+ 厚多层绝缘层 6 太阳能屏蔽(可选) 7+ 低电导率结构界面 6+ 大容量 20 K 和 90 K 低温冷却器 4+ 低温冷却器集成:广域冷却(罐上管分布式冷却和屏蔽上管分布式冷却)
背景:机械集中的超声消融策略沸腾的组织疗法(BH)可以引起抗肿瘤免疫的有趣特征。然而,BH对树突状细胞功能的影响尚不清楚,这损害了我们最佳地将BH与免疫疗法结合以控制转移性疾病的能力。方法:使用稀疏的扫描(超声之间的1 mM间距)在双侧和单侧环境中使用B16F10-ZSGREEN黑色素瘤进行应用。同侧和对侧肿瘤生长。流式细胞仪用于跟踪Zsgreen抗原并评估BH如何驱动树突细胞行为。结果:BH单一疗法在这种高度侵略性的模型中引起了同侧和脱支肿瘤的控制。肿瘤抗原在BH后24H时在24H时在肿瘤淋巴结(TDLNS)中的免疫细胞中存在约3倍,但减少了96h。b细胞,巨噬细胞,单核细胞,粒细胞和两个常规的树突状细胞子集(即cdc1s和cdc2s)获得了与BH的更明显的抗原。BH驱动了两个CDC亚群的激活,激活取决于肿瘤抗原的采集。我们的数据还表明,BH-蛋白肿瘤抗原与损伤相关的分子模式(湿)复合,并且CDC不用抗原传播到TDLN。相反,它们会在流经传入的淋巴管进入TDLN时获得抗原。结论:当使用稀疏扫描方案应用时,BH单一疗法会通过几种先前未经批准的机制产生脱离黑色素瘤的控制和树突状细胞功能。这些结果为如何最好地结合BH与免疫疗法以治疗转移性黑色素瘤提供了新的见解。
的增加而降低 , 当冷却水流量增至恰好实现热量匹配流量的 1.5、2.7、3.8 倍时 ,COP 分别下降 39.0%、60.1%、69.2%。
传热系数(HTC,H)和临界热通量(CHF,Q'CHF)是量化沸腾性能的两个主要参数。HTC描述了沸腾传热的有效性,该沸腾的传热效率定义为热通量(Q'')与壁超热(δTW)的比率,即H = Q' /δTW。此处δTw是沸腾表面和饱和液体之间的温度差。在成核沸腾状态下,热通量随壁过热而增加。但是,当热通量足够高时,沸腾表面上的蒸气气泡过多的核核会阻止液体重新润湿表面,然后在表面上形成绝缘的蒸气膜。这种蒸气膜变成了一个热屏障,可导致墙壁超热和沸腾系统的倦怠大幅增加。从成核沸腾到膜沸腾的这种过渡称为沸腾危机,其中最大热通量为CHF。增强CHF可以实现更大的安全边缘或扩展沸腾系统的操作热通量范围。[5]
摘要:随着电子产品的快速发展,热管理已成为最关键的问题之一。激烈的研究集中在用于增强传热的表面修饰上。在这项研究中,多层铜微壳(MCM)是为商业紧凑的电子冷却而开发的。沸腾的传热性能,包括临界热量(CHF),传热系数(HTC)和成核沸腾的发作(ONB)。研究了Micromesh层对沸腾性能的影响,并分析了起泡特性。在研究中,MCM-5显示了207.5 W/cm 2的最高临界热量(CHF),而HTC的HTC为16.5 w(cm 2·K),因为它具有丰富的微孔作为核位点,并且具有出色的毛细管焊接能力。此外,将MCM与文献中的其他表面结构进行了比较,并具有高竞争力和在商业应用中的高功率冷却的潜力。
电化学和表面分析表征研究煮沸的红洋葱提取物对0.2 M马来酸培养基中锡腐蚀的抑制作用。Brahim Ait Addi A,Salma Mouaamoun A,Abdelaziz ait Addi A,Abdul Shaban B *,El-Habib Ait Addi C,Mohamed Hamdani A