图 3:检测效率和死时间引起的入射光子统计数据失真。具有泊松统计数据 Poisson( k | µT ) 的入射状态,µT = 80(实心方块),由于有限量子效率 η = 0 . 7(空心方块)而有效衰减,见公式 (10)。输出分布保持为泊松分布,具有泊松( m | ηµT )。对于具有可瘫痪死时间 t dead 的探测器,输出统计数据由公式控制。 (11)给出分布泊松(k | ηµT exp(−ηµt dead)),即它仍然保持泊松分布,新的均值为ηµT exp(−ηµt dead)(实心圆)。对于具有非瘫痪死时间t dead 的探测器,输出分布不再是泊松分布,而是亚泊松分布,参见公式(13)(空心圆)。
标准偏差以及如何计算给定 PDF 的标准偏差。基本组合学和众所周知的分布,如二项分布、泊松分布、高斯分布。7. 入门常微分方程 (ODE):自由度、阶数
缩写/标签如果使用:N.N。:不可证明的N.B.: cannot be determinable/assessable BG: Determination limit, all values 下划线和脂肪印刷值将I值的伤害描述为I值。 *根据Önormen ISO 8199的效果非常低,对于低于3的检测限,这是由泊松分布产生的。 因此,结果应仅定性解释为“样品中的微生物”。 **参数由现场测试中心或测量 如果确定。下划线和脂肪印刷值将I值的伤害描述为I值。*根据Önormen ISO 8199的效果非常低,对于低于3的检测限,这是由泊松分布产生的。因此,结果应仅定性解释为“样品中的微生物”。**参数由现场测试中心或如果确定。
i. 牛顿力学 ii. 哈密顿力学 iii. 拉格朗日力学 iv. 波动力学 (1) 简正模 (2) 波叠加 (3) 经典谐振子 v. 统计物理学 (1) 热力学定律 (2) 玻尔兹曼分布、泊松分布、二项分布、几何分布 (3) 熵及其与温度和信息的关系 (4) 配分函数 (5) 微正则系综 (6) 正则系综 vi. 相对论 (1) 狭义相对论 (2) 洛伦兹变换 (3) 长度收缩 (4) 时间膨胀 (5) 时空图 (6) 引力 b. 量子物理学
平均值、中位数和众数 数据变异性:范围、四分位数、IQR、计算百分位数 方差、标准差、统计摘要 分布类型 – 正态分布、二项分布、泊松分布 概率分布、偏度、异常值 数据分布,68–95–99.7 规则(经验规则) 描述统计和推断统计 统计术语和定义、数据类型 数据测量尺度、标准化 距离测量、欧几里得距离 概率计算 – 独立和因果 假设检验、方差分析 数据可视化:
· 主要内容:概率与统计、均值与方差、测量与统计误差、二项分布与泊松分布、高斯分布、中心极限定理、误差传播、卡方分布、最小二乘拟合、假设检验、基本实验室方法。· 实验室主题:掷两个六面骰子的概率、π 的测量、从一打六面骰子中掷出二的概率、宇宙射线粒子通过盖革计数器的速率、基本“弹球机”的高斯分布、伽马射线能谱、NaI 探测器的能量分辨率、放射性 137 Ba 同位素的寿命。· 教科书:John Taylor 著《误差分析导论》;第 1 至 12 章(第 9 章除外)的各个部分。教科书未涵盖的主题的讲座和实验笔记:https://www.asc. ohio-state.edu/gan.1/teaching/spring18/3700.html。
1。矩阵和决定因素2。“应用矩阵和决定因素(使用矩阵方法和Cramer的规则同时解决系统的求解系统)” 3。“高阶衍生物4。应用导数(切线和正常方程,增加和减少功能,使用衍生物找到最大值和最小值,边际成本和边际收入)” 5。LPP 6模型算术和一致性模型7。概率分布(数学期望,差异,二项式分布,泊松分布,正态分布)8。Alligation&Rigation,Boats&Streams,Pipes&Pisters&Scisterns,Races&Games,Races&Games,数字不平等9.时间序列10。推论统计(人口和样本,参数和统计,t检验一个样本,两个独立样本)11。金融数学12。积分(不确定和确定)13。应用积分(曲线下的区域,消费者和生产者盈余)
课程概述:概率,随机变量和随机信号的概念。随机过程的一阶和二阶统计。事件点的泊松分布。随机变量及其特征。CDF&PDF及其属性。存在定理。高斯RV,Poisson RV,Bernoulli分布的RV和均匀分布的RV,线性系统对随机信号输入的响应;功率密度光谱和基本关系。线性馈回控制的分析设计。parseval的定理及其概括。M.S.E. 对不同情况的估计。 维纳蹄积分方程和解决方案方法。 高斯 - 马尔可夫序列和过程模型;连续和离散线性系统的最佳预测,过滤和平滑。M.S.E.对不同情况的估计。维纳蹄积分方程和解决方案方法。高斯 - 马尔可夫序列和过程模型;连续和离散线性系统的最佳预测,过滤和平滑。
AI6101:应用统计和概率 [3 1 0 4] 统计学基础:统计学在工程中的作用、基本原理、回顾性研究、观察性研究、设计实验、随时间观察过程、机械和经验模型、概率和概率模型、集中趋势测量:平均值、中位数和众数、离散度测量-范围、四分位差、平均差、标准差、变异系数、偏度、峰度。概率分布:样本空间和事件、概率的解释和公理、加法规则、条件概率、乘法和总计、概率规则、贝叶斯定理、随机变量、随机变量的概念、伯努利分布、二项分布、泊松分布、正态分布。相关性和回归:概念和类型、卡尔·皮尔逊方法、秩斯皮尔曼方法、最小二乘法、离散随机变量和概率分布。连续随机变量和概率分布。联合概率分布。假设检验:假设检验、零假设和备择假设、显著性水平、单尾和双尾检验、大样本检验(单均值检验、均值差检验、单比例检验、比例差检验)、t 检验、F 检验、卡方检验。参考文献: