摘要:脱发被认为是一个普遍但令人不安的健康问题,治疗方案有限。作为源自携带蛋白质,核酸和脂质细胞的膜结构,外泌体在功能上使细胞间通讯进行药物药物治疗并改变受体细胞的反应,从而导致疾病约束或促进。外泌体在诊断和治疗疾病方面具有广泛的前景。使用动物模型和细胞水平的研究清楚地表明,包括皮肤乳头细胞和间充质干细胞在内的几种类型细胞的外泌体具有显着的促进头发生长的能力,这表明外泌体可能提供了一种治疗脱发的新选择。在这里,我们对外泌体在头发生长中的应用中的最新进展进行了详尽的回顾。关键字:外泌体,毛囊,脱发
外泌体反过来是一条长期科学进步的有希望的新疗法[2-4]。它们不过是有助于细胞间通信的内体源的细胞外囊泡[5]。最初认为外泌体仅是携带脱氧核糖核酸(DNA),信使核糖核酸(mRNA),微核核酸(miRNA),蛋白质和脂质的细胞货物容器。然而,最近的研究使我们对这些看似不重要的小囊泡有了巨大的见解。外泌体可以作为基于受体微环境和细胞的独特组成作为细胞间和全身通信者。外泌体也由肿瘤细胞产生 - 称为肿瘤衍生的外泌体(TEX)。这些可能在癌症中起关键作用,作为信号分子[6]。在癌症中,外泌体信号可以通过抑制抗原呈递细胞,T细胞和天然杀伤细胞的功能和生产来影响免疫系统。它们还可能增加免疫抑制细胞的数量,从而为肿瘤病变的进展提供肥沃的地面[7,8]。Texs介导这些免疫支持癌细胞,以避免癌症发育过程中的免疫存活。
①出色的分化能力:羊水衍生的胎儿干细胞具有多能干细胞,可以分化为胚胎干细胞等各种细胞类型(内胚层,中胚层和外胚层),但免疫原性低,没有肿瘤性。间充质干细胞(间充质SC)主要分化为骨,软骨和肌肉等中皮组织。f表示MSC(间充质干细胞),HSC(造血干细胞)和ESC(胚胎干细胞)的特征
外泌体是由各种细胞分泌的直径为30至150纳米的囊泡。7 它们通过表面蛋白信号传导或转移所含的脂质、核酸和其他生物分子在细胞间传递信息。外泌体的性质取决于其细胞表面蛋白和其携带的生物分子,这使得它们在开发新的运输方法中受到特别关注(图1)。在他们的研究中,Wan等人6精确安全地在从肝星状细胞纯化的外泌体内运输大型RNP复合物。然而,外泌体的提取效率并不令人满意。此外,来自不同细胞的天然获得的外泌体具有不同的组成,不同批次之间的批次效应也不同。此外,外泌体的直径变化是不可控的。这些缺点限制了天然外泌体载体的广泛使用,这使得有必要开发更好的纳米载体和可控的运输策略。 5, 8 细胞膜伪装纳米技术是一种新兴的递送策略,可能是纳米药物运输的更好选择。通过超声波或挤压方法,从不同细胞系中提取的细胞膜可以涂覆在纳米颗粒周围,尺寸可控,输出率高。膜伪装纳米颗粒具有更长的循环时间,对隐藏在生物相容性膜下的异源抗原的不良影响较低。因此,通过结合各种
胃癌和结直肠癌是全球范围内的重要疾病,具有高度的分子和表型异质性(Smyth et al.,2020)。胃癌可由多种基因和表观遗传突变引起,幽门螺杆菌也是重要的致病因素(Uemura et al.,2001)。肿瘤微环境对胃癌患者的生存和治疗反应有很大影响(Quail and Joyce,2013)。目前,胃癌的早期诊断仍然存在问题,因为临床症状通常仅出现在癌症发展的晚期阶段,这大大限制了治疗选择(Maconi et al.,2008)。结直肠癌是全球第四大致命癌症,其病因包括饮食习惯、高龄和吸烟(Dekker et al.,2019)。结直肠癌通常在手术切除后进行辅助治疗。但随后癌症复发和转移的风险仍然很高,而且往往与化疗、放疗等传统疗法的耐药性有关(Jänne and Mayer,2000)。由于胃癌和结直肠癌的发病率和死亡率很高,研究新的靶向治疗方法迫在眉睫。最近的研究表明,外泌体可以作为靶向药物载体。外泌体是由大多数细胞分泌的微小内吞囊泡(Théry et al.,2002),其直径在40至100纳米之间。外泌体被发现能够将生物活性分子或其他物质运送到特定的受体细胞进行细胞间通讯(图1)。越来越多的研究表明,外泌体是重要的纳米材料,可以通过细胞间传递调控重要的生物学行为(Yang et al.,2019)。它们还参与肿瘤细胞凋亡、癌细胞增殖和迁移、肿瘤微环境调节和血管生成,在包括癌症在内的许多疾病的发病机制中发挥着重要作用(Nabariya et al., 2020)。由于这些特性,外泌体也可用作癌症治疗中有效的靶向药物递送系统。
外泌体是一种直径为40~100nm、具有双层膜包裹的细胞外囊泡,作为天然载体具有免疫原性低、在血液中稳定性高、可将药物直达细胞等优点,能够在细胞间进行运输,有利于细胞间物质和信息的交换,通过装载外源性药物(如小分子药物、跨膜蛋白、核酸药物等)来改变受体细胞的功能状态。外泌体作为药物载体的关键是将外源性药物有效地装载到外泌体中,而这一任务对外泌体作为药物载体的功能化研究是一个挑战。目前,超声处理、电穿孔、转染、孵育、挤压、皂苷辅助装载、转基因、冻融循环、热冲击、pH梯度法、低渗透析等方法已被用于将这些药物装载到外泌体中。本综述旨在概述外泌体各种药物装载技术的优缺点。
理由:核(NP)纤维化是椎间盘变性(IVDD)的促成因素,该因素缺乏有效的治疗。这项研究的重点是阐明TGF-β信号阻遏物滑雪物在NP纤维化中的作用和机制,并探索其治疗潜力。方法:单细胞RNA测序(SCRNA-SEQ)用于研究纤维化核细胞细胞(NPC)亚群并评估TGF-β信号传导激活。将靶向纤维化NPC标记FAP和SKI mRNA的单链可变片段(SCFV)的两个重组质粒共转染到HEK-293T细胞中,以产生功能化的外泌体(EX SKI+SCFV)。将EX SKI+SCFV添加到明胶/氧化的藻酸钠水凝胶中产生了名为GEL@ex Ski+SCFV的pH响应外部/水凝胶系统。通过RNA测序,分子对接和共免疫沉淀评估了Gel@Ex Ski+SCFV的治疗效果和基础机制。结果:纤维化的NPC子集的特征是FAP升高和滑雪表达降低,以及TGF-β信号传导途径的激活。滑雪过表达降低了TGF-β处理的NPC中的纤维化。EX SKI+SCFV成功地将滑雪mRNA传递到表达FAP的纤维化NPC中。gel@ex Ski+SCFV具有良好的机械性能,可降解性,注射性和生物相容性。gel@ex Ski+SCFV有效地减轻了大鼠的NP纤维化和IVDD。RNA测序,分子对接和共免疫沉淀显示滑雪可以与FOXO3相互作用以抑制TGF-β信号通路。
在广泛的疾病适应症中,从成人组织,大型外体扩张能力和明显的治疗效率中脱离的易于分离,使间充质干细胞(MSC)成为再生医学首选的干细胞。临床和动物研究表明,分泌的营养因素,而不是干细胞分化,可能介导了MSC的许多治疗效率。MSC治疗机制的这种范式转移已开始将MSC治疗从细胞基于生物学的治疗转化为基于生物学的治疗。我们的小组将外泌体(一种分泌的膜囊泡)识别为MSC分泌中的活跃治疗因素。外泌体被认为可以介导细胞与细胞通信。它带有大型且多样化的蛋白质货物,可以调节各种生化和细胞过程。这些包括增强糖酵解,不仅增加了细胞ATP的产生,还增加了用于合成代谢活性的糖酵解中间体,从而诱导腺苷介导的生存激酶的激活(例如ERK和AKT通过