集成的光子学是一种在应用程序的各个领域,包括光学共同传感和生物传感。尤其是,片上生物感应引起了极大的兴趣,这是由于其在低成本,紧凑性和低检测极限方面的潜力。CMOS兼容的氮化硅(SIN X)目前在片上光谱中起着重要作用,是可见/近红外(MR)平台的首选材料[1]。然而,sin x在蓝色/紫外线波长下遭受高吸收损失[2]。已经努力研究了在紫外线波长的波导,但紫外线平台仍处于起步阶段。对于理想的光子平台,低损耗和单模操作对于结合芯片上多个光学组件至关重要。最近,X。Liu等[3]报道了一个单晶AIN平台。从k = 390 nm处的出色胶片质量,中等的波导损失为8 db/cm。然而,即使使用电子束光刻,大波导维度和高指数(N)值为2.2也会导致多模式引导。相反,使用原子层沉积(ALD),氧化铝(A10 X)具有较低的折射率值,高于220 nm [4]的高透明度,可以很好地控制A10 X膜的均匀性和厚度。G.N. West等。 在“ k = 371 nm [5]时,以令人印象深刻的低损失为〜3 db/cm的A1G X波导,需要步进光刻来进行模式波导,然后才能实现单个模式操作。 在402 nm的波长下证明了5 dB/cm的传播损失。G.N.West等。 在“ k = 371 nm [5]时,以令人印象深刻的低损失为〜3 db/cm的A1G X波导,需要步进光刻来进行模式波导,然后才能实现单个模式操作。West等。在“ k = 371 nm [5]时,以令人印象深刻的低损失为〜3 db/cm的A1G X波导,需要步进光刻来进行模式波导,然后才能实现单个模式操作。在402 nm的波长下证明了5 dB/cm的传播损失。此外,它们的平台将氧化硅(Sio X)的实现为硬面膜,后来将其作为顶级层面。尽管这将有效地降低核心和覆层之间的指数对比,然后减少散射损失,但Sio X-覆层不可避免地会抑制平台的生物感应电位。在本文中,我们提出了由常规接触光刻(Karl Suss Ma6对准器)制造的空气层单模A10 X波导。在实施昂贵且耗时的步进光刻之前,该A10 X平台利用了一种高效且具有成本效益的光刻工具来制造紫外线/紫罗兰色频谱设备的研究原型。
在本报告中,我们记录了 WR15 矩形波导标准的模型和尺寸可追溯性,用于使用矢量网络分析仪执行 50 GHz 至 75 GHz 的多线直通反射线校准。我们确定了传输线标准模型中使用的方程,并提出了一种使用闭式解确定波导金属电导率的方法,该解将其与传播常数相关联。接下来,我们详细介绍了 WR15 传输线标准的可追溯尺寸测量和相关不确定性。最后,我们描述了如何使用我们的软件 NIST 微波不确定性框架来实现校准标准的物理模型,并将这些系统不确定性传播到被测设备的校准散射参数。我们提供了一个测量示例以供说明。
摘要 — 本文报道了一种三通道、非连续、流形多路复用器,工作频率为 220 至 330 GHz,工作带宽为 40%。该结构采用一组脊状基片集成波导 (SIW) 进行设计和实现。与传统 SIW 设计相比,脊状 SIW 提高了阻带带宽,并将整体结构尺寸缩小了 35%。三工器采用英特尔开发的有机封装基板技术,具有四层厚铜金属层和连续沟槽通孔代替标准通孔围栏,可显著降低脊状 SIW 波导的欧姆损耗。在三工器结构的开发中采用了电磁电路建模和协同设计技术。使用带状毫米波晶圆探测测量制造的三工器,通带中的插入损耗为 3 ∼ 7 dB,每个通道滤波器的平均回波损耗优于 10 dB。测得的三个通道的阻带衰减均优于 27 dB。
量子电动力学中光与物质相互作用的模型通常采用偶极近似 1,2,其中与原子相互作用的电磁模式的波长相比,原子被视为点状物体。然而,当原子尺寸与模式波长之比增加时,偶极近似不再成立,原子被称为“巨原子” 2,3 。到目前为止,巨原子领域固态器件的实验研究仅限于耦合到短波长表面声波的超导量子比特 4–10 ,只探测单一频率下的原子特性。在这里,我们使用一种替代架构,通过将小原子在多个但分隔良好的离散位置耦合到波导来实现巨原子。该系统能够实现可调原子-波导耦合,具有较大的开关比 3 ,并且耦合谱可通过器件设计进行工程设计。我们还展示了多个巨型原子之间的无退相干相互作用,这些相互作用由波导中的准连续模式谱介导,这是使用小原子无法实现的效应 11 。这些特性允许此架构中的量子比特在原位在受保护和发射配置之间切换,同时保留量子比特-量子比特相互作用,为高保真量子模拟和非经典巡回光子生成开辟了可能性 12,13 。
我们从理论上研究了手性波导中光子的少体和多体动力学。特别是,我们研究了脉冲通过手性耦合到波导的 N 个两级系统集合的传播。我们表明,该系统支持相关多光子束缚态,这些束缚态具有明确定义的光子数 n,并以 1 =n 2 的群延迟比例在系统中传播。这产生了一个有趣的结果,即在传播过程中,入射相干态脉冲会分解为不同的束缚态分量,这些分量可以在足够长的系统中在输出端空间分离。对于足够多的光子和足够短的系统,我们表明 n 体束缚态的线性组合恢复了自诱导透明中众所周知的平均场孤子现象。因此,我们的工作涵盖了从少光子量子传播到真正的量子多体(原子和光子)现象以及最终的量子到经典跃迁的整个范围。最后,我们证明束缚态可以与额外的光子发生弹性散射。总之,我们的结果表明,光子束缚态是真正独特的物理对象,它来自光子和两级发射器之间最基本的光物质相互作用。我们的工作为在手性波导 QED 中研究量子多体物理和光子孤子物理打开了大门。
3 共面波导谐振器的设计 8 3.1 材料和几何选择 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1.3 共面波导几何形状. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................13 3.3.1 初步设计....................................................................................................................................................................................14 3.3.2 优化设计....................................................................................................................................................................................15
光与物质相互作用的模型通常采用偶极子近似 [1,2],在该近似中,原子与与之相互作用的电磁模式的波长相比,被视为点状物体。然而,当原子尺寸与模式波长之比增加时,偶极子近似不再成立,原子被称为“巨原子” [2,3]。到目前为止,对巨原子领域固态器件的实验研究仅限于与短波长表面声波耦合的超导量子比特 [4-10],仅探测单一频率下的原子特性。在这里,我们采用了一种替代架构,通过将小原子与多个但相隔良好、离散的位置的波导耦合来实现巨原子。我们对巨原子的实现使得可调的原子-波导耦合成为可能,该耦合具有大的导通比,并且可以通过器件设计来控制耦合谱 [3]。我们还展示了多个巨原子之间的无退相干相互作用,这种相互作用由波导中模式的准连续谱介导,这是小原子无法实现的效应 [11]。这些特性使该架构中的量子比特能够在保护配置和发射配置之间原位切换,同时保留量子比特之间的相互作用,为高保真量子模拟和非经典巡回光子生成开辟了新的可能性 [12, 13]。原子直接耦合到波导的器件可以通过波导量子电动力学 (wQED) 很好地描述。超导电路为实现和探索 wQED 物理提供了一个理想的平台,因为它可以实现
摘要:在这封信中,随机激光是通过覆盖聚甲基丙烯酸甲酯(PMMA)掺杂的CDSE/ZNS胶体量子点(CQDS)构建的活性波导结构来制造的。由于CQD的光致发光光谱以及Active波导层提供的强限制机制,因此具有较低的阈值,因为Ag Nanoislands的等离子共振出色的重叠。随机激光的性能可以通过AG纳米兰州结构的灵活制造来调节。由于CDSE/ZNS CQD的超级化学和照片稳定性以及PMMA矩阵提供的CDSE/ZNS CQD的稳定外部环境,光谱演化显示在不间断激光照射下随机激光的稳定性。
光源特性。为了实现便携式传感或片上实验室功能的低成本、稳定的光谱复制,近年来高分辨率片上光谱仪的开发取得了长足进步。传统的片上光谱仪通常基于梯阶光栅[1–3]和阵列波导光栅[2,4–7],需要精心设计才能满足目标光谱要求。这些器件的光谱分辨率与光路长度成比例,因此占用面积相对较大(≈1-2 cm2)。另一种很有前途的片上宽带光谱仪方法是将微机电系统 (MEMS) 技术与傅里叶变换红外光谱相结合。[8–14] 这些器件通常通过深蚀刻硅制成,因此不适合可见光波长范围内的应用。Mortada 等人介绍了一种不同的基于 MEMS 的架构,利用光在空气中的传播。可以将操作范围扩展到可见光波长,同时在 635 nm 波长下具有中等分辨率。[9]