摘要 本研究旨在从塞内加尔刺桐叶和茎皮中分离植物成分,并评估其对与糖尿病相关的消化酶α-葡萄糖苷酶的抑制活性。对叶子的植物化学研究结果分离出三种皂苷(3-5)、两种三萜类化合物(7和8)和两种甾体(10a和10b)作为不可分离的混合物,而从茎皮中分离出一种皂苷(6)、一种三萜类化合物(9)和两种肉桂酸酯的混合物(2a和2b)。除化合物2b、7、8、10a和10b外,所有分离的化合物均为首次从刺桐属植物中报道。两种肉桂酸酯(2a 和 2b)的混合物乙酰化后,生成一种新的二酯衍生物(1),俗称刺桐花苷。与标准药物阿卡波糖相比,提取物和纯化合物(3、4、6)表现出良好的 a -葡萄糖苷酶抑制活性。研究结果表明,E. senegalensis 的皂苷可用于开发潜在的抗高血糖药物。
痴呆症目前仍然是一个全球性的健康问题,全球估计有5520万人患有痴呆症。最常见的痴呆症类型之一是阿尔茨海默病,因为它占痴呆症病例的 60-80%。日惹是印度尼西亚阿尔茨海默病发病率最高的地区。阿尔茨海默病是一种渐进性的神经退行性疾病,由大脑中形成β-淀粉样斑块引起,会破坏神经系统。根据胆碱能理论,斑块的形成是由于酶乙酰胆碱酯酶 (AChE) 的存在。通过药物治疗方法,抑制AChE酶可以改善认知功能并抑制阿尔茨海默病的进展。同时,抗氧化活性也被证明可以预防阿尔茨海默病。沉香叶(Aquilaria malaccensis Lamk.)是一种富含酚类化合物的植物,具有很强的抗氧化活性。然而,并非所有的酚类化合物都能被人体消化,因此需要通过发酵进行简化。研究表明,将沉香茶制成康普茶可以使其中的酚类含量比普通沉香叶茶中的酚类含量高出两倍。然而,沉香叶康普茶作为阿尔茨海默病替代疗法的抗氧化和乙酰胆碱酯酶抑制剂活性尚未被研究过。基于此,本研究旨在通过薄层色谱(TLC)和气相色谱-质谱(GC-MS)分析测试沉香叶茶康普茶的抗氧化活性、乙酰胆碱酯酶抑制剂和植物化学成分。该研究的阶段包括沉香叶的准备、康普茶发酵、感官测试、抗氧化剂测试、乙酰胆碱酯酶抑制测试和植物化学概况(薄层色谱法和气相色谱-质谱法)。本研究结果表明,沉香叶康普茶提取物具有不同的抗氧化活性,抗氧化活性最好的是康普茶发酵7天的乙酸乙酯提取物,IC50值为2.68µg/mL。沉香叶茶的康普茶提取物通过将癸酸乙酯化合物与 4M0E 蛋白结合,在计算机中具有 AChE 抑制活性。沉香叶康普茶乙酸乙酯提取物的植物化学概况表明,薄层色谱试验中存在黄酮类和酚类化合物,而 GC-MS 试验表明,角鲨烯是提取物中检测到的面积百分比最高的化合物。
马来西亚半岛占该国电力需求的 74%,其每日需求曲线呈现“双峰”特征,即白天下午 4 点和晚上 8 点。马来西亚拥有大量未开发的太阳能资源,具有独特的优势,可以利用太阳能满足白天高峰期的需求,而水电和电池储能等其他选择可以补充太阳能,满足晚间高峰期的需求。到 2023 年,太阳能和水电合计占白天高峰期发电量的 10%,而水电为满足晚间高峰期贡献了 7%。在储能系统必不可少之前,马来西亚半岛的电网可以容纳约 2.4 吉瓦的太阳能(高达电网渗透率的 20%)。
+HUHZHSUHVHQWWZRVLJQ 4QGLQJVWKDWFRQWULEXWH XQGHUVWDQGLQJRI 白色念珠菌DOLIH-WKUHDWHQLQJ KXPDQIXQJDOSDWKRJHQ)LU HVWDEOLVKWKDWWKH 白色念珠菌UHIHUHQFHVWUDLQLVGHIHF 51$LQWHUIHUHQFHDIXQGDP UHJXODWRU\SDWKZD\6HFRQ GLVFRYHUWKDWLQFRQWUD UHIHUHQFHVWUDLQWKHYD PDMRULW\RIC。白色念珠菌LVRODWH FRQWDLQDQDFWLYH51$ LQWHUIHUHQFH51$ LSDWKZ VLOHQFHVJHQHH[SUHVVLRQ &RQVLGHULQJWKDW51$ LSOD FHQWUDOUROHVLQUHYHUVL JRYHUQLQJJHQHH[SUHVVLRQ JHQRPHVWDELOLW\GUXJUH DQGFRXQWHULQJYLUDOLQIH RXU4QGLQJRHUVYDOXDEOH LQVLJKWVLQWRWKHELRORJ GDQJHURXVIXQJDOSDWKRJHQ
figuren°3:正常细胞对癌细胞对活性氧的敏感性的模型………………………………………………………………………
基因选择性转录因子通过与其靶基因调节区域内的特定DNA元件结合(1)。但是,并非完全定义此DNA结合的序列要求。几个参数,例如蛋白质 - 蛋白质相互作用与相邻结合的因素,DNA结构的影响(弯曲等)。),重要的是,结合位点与认知因子的比率确定给定转录因子是否可以有效地与相应的结合位点相互作用。体外和大概也在体内也是如此,对于确定转录因子是否会与其最佳识别序列的变体结合,因此,它的基因调节。在这些考虑因素中提示,我们询问是否存在一种蜂窝机制,该机制是否存在在转录因子活动和可用目标位点的繁琐之间保持平衡。对AP-1家族成员的特征良好转录因子C-Jun进行了实验(2-4)。包含AP-1结合位点的启动子是C-Jun调节的目标。C-Jun的活性受到多种机制的紧密控制,并且对蛋白质的异常调节会导致恶性转化和致癌作用(5)。在这项研究中,我们描述了一种机制,该机制通过改变其磷酸化态的DNA结合活性,取决于细胞中存在的C-Jun结合位点的浓度。这种机制可以用来设置和微调C-Jun与其结合位点的比率。有趣的是,与这种现象有关的磷酸化位点与以前据报道经历信号依赖性去磷酸化相同。
摘要:在六周的时间内研究了重金属对土壤微生物过程的影响。分析级(Sigma)铜,锌和镍的硫酸盐盐分别添加并组合到土壤样品中,并在不同的塑料锅中孵育。样品是从锅中从盆中取出的,并测量了微生物碳和氮矿化,微生物生物量碳和呼吸的速率。结果表明金属对测量参数的影响很明显(p <0.05。)。在第6周的上进行后第6周,铜的碳累积率很高(6.03%)和铜:锌(5.80%)处理,但镍和锌的处理率很低(分别为4.93%和5.02%)。用铜和铜处理的样品中的氮矿化速率为0.41和0.44%,而实验开始时获得的氮矿化速率为0.22%-0.24%。土壤微生物生物量碳的平均值从183.7 - 185.6μg/g的平均值下降,在处理铜的样品中分别为100.8和124.6μg/g。在铜中的平均速率为2.51-2.56μg的土壤微生物的C/g呼吸速度下降到0.98、1.08和1.61μg的C/g:锌,铜和锌处理的土壤在实验结束时进行了处理。结果表明金属的添加剂或协同作用。
keji beling(Strobilanthes crispus)是一种药用植物,传统上用于糖尿病,伤口愈合,利尿剂和便秘治疗。s. crispus叶的功效,因为药物与其中包含的抗氧化剂有关。用于测量抗氧化活性的几种方法是DPPH(2,2-二苯基-1-苯羟基羟基),FRAP(铁还原抗氧化能力)和FTC(硫氰酸酯)。通过这三种方法,可以对抗氧化活性的各个方面进行更全面的评估,以抗击自由基和保护细胞免受氧化损伤的能力。这项研究旨在确定抗氧化活性,并确定一种在一种方法中活跃的分数是否也在另一种方法中也有效,以便可以通过相关的科学领域来开发它。研究始于使用具有变化极性(N-己烷,乙酸乙酯和甲醇)的溶剂进行浸没的分馏。分析了总酚类,类黄酮及其抗氧化活性的每个馏分。结果表明,N-己烷,乙酸乙酯和甲醇级分为6.43。 11.56; 16.13 mggae/g,类黄酮含量为3.75; 7.34;分别为7.19 mgqe/g。使用DPPH方法进行的抗氧化活性测试表明,N-己烷,乙酸乙酯和甲醇馏分具有抗氧化活性,每个IC 50值为731.93; 471.99; 115.69 mg/l。使用FRAP方法的抗氧化活性测试表明,基于66.28的Fe 2+的量,N-己烷,乙酸乙酯和甲醇级分具有抗氧化活性。 138.90; 143.43 mg/l Fe 2+。同时,使用FTC方法进行的抗氧化活性测试表明,N-己烷,乙酸乙酯和甲醇级分具有抗氧化活性,脂肪过氧化的抑制百分比为36.86; 55.76;分别为46.77%。基于获得的数据,可以得出结论,使用DPPH和FRAP方法的Keji Beling(S. crispus)叶片馏分表明,甲醇级分的抗氧化活性高于乙酸乙酯和N-己烷级分。这些结果表明,抗氧化活性与每个馏分的酚含量成正比。同时,使用FTC方法,发现乙酸乙酯的活性高于甲醇和N-己烷级分。这些结果表明,抗氧化活性与每个馏分的类黄酮含量成正比。
腺病毒5 WA蛋白复合物是从病毒体中分离出来的,作为双链wra分子,由每条链的5'末端共同连接到Imknawn功能的Virion蛋白上。可以用大肠杆菌异核酸酶III消化WA-蛋白质复合物,以产生类似于WA复制中间体的NOLECULES,因为它们包含长长的单个绞线区域,以5'tenmini结合到最高的蛋白质。非核酸酶III消化大大降低了原酶消化腺病毒5 WNA的感染性。hawever,当至少2400个核苷酸被重重载时,KA蛋白复合物的感染性不会显着改变。这表明末端蛋白可以通过细胞外切核酸酶保护5'终止的单链fran消化。DNA-蛋白质复型从宿主范围突变体制备,其左4%的突变映射与外切核酸外切酶III消化,与野生型限制性片段杂交,将左8%的GENANE片段与HELA细胞旋转。具有野生型表型的病毒以高频回收。
是最需要的,无论是在白天还是晚上●由于锂电池变得更容易生产,其成本大幅下降●快速创新意味着新的电池技术,如LFP(消除了对镍和钴的需求)和钠离子(消除了对锂的需求)正在迅速进入市场,带来成本和性能的巨大改进●模块化技术,可以在世界任何地方部署;在电网规模(高达几吉瓦)以及较小规模(几千瓦)的住宅或商业建筑中部署,以增强现场生产的能源消耗
