2018 年 IRDS 创造了“电活性粒子 (EAP)”这一术语,专门解决小于 50% ½ 间距设计规则的 EAP 可能导致产量低于预期的问题。
我们研究使用单个活性粒子作为“工作介质”的微型发动机。即使在恒温下,驱动粒子定向运动所需的部分能量也可以作为功回收。通过示意性地计算为定向运动提供动力的化学自由度,可以捕获一大类合成活性粒子,而无需解决精确的微观机制。我们推导出准静态热力学效率的分析结果,即可回收为机械功的可用化学能部分。虽然这种效率对于胶体粒子来说微不足道,但随着耗散超过线性响应范围,它会增加,并在较大的推进速度下达到最大值。我们的结果表明,超出线性响应范围的驱动会对主动发动机的效率产生不小的影响。
摘要:光提供了一种控制材料物理行为的强大手段,但很少用于为活性物质系统提供动力和引导。我们展示了对被称为“skyrmion”的液晶拓扑孤子的光学控制,这种孤子是最近出现的可高度重构的无生命活性粒子,能够表现出诸如群居之类的突发集体行为。由于手性向列液晶具有扭曲的自然倾向,并且对电场和光反应灵敏,因此它可作为动态控制 skyrmion 和其他活性粒子的试验台。利用环境强度的非结构化光,我们展示了由振荡电场驱动并由光诱导障碍物和图案照明引导的大规模多面重构和集体 skyrmion 运动的解除。
工业或个人用途会增加环境污染(例如水污染或二氧化碳产生)并且还会导致不利的健康影响(例如刺激、过敏反应或溶血问题)。 [6] 因此,必须找到一种环保且可持续的替代方案。Pickering 乳液以首次报道它们的科学家的名字命名,其特点是存在提供稳定性的界面活性粒子。 [7] 在油包水或水包油乳液的情况下,这些 Pickering 稳定剂会吸附在油/水界面上并发挥作用。 [8] 特别是,与传统的表面活性剂稳定体系不同,高胶体稳定性不是来自表面张力的降低,而是来自界面上物理屏障的形成。 [9] 纳米粒子的不可逆锚定可以通过考虑从两种不混溶液体界面解吸所需的高能量来解释。 [10] 因此,产生了强大的空间屏障,乳液具有很强的抗聚结、抗变形和抗奥斯特瓦尔德熟化能力,可以长时间有效地保护液滴。 [6]
如今,纳米技术几乎已成为家喻户晓的词汇,或者至少是一些带有“纳米”的词汇,如纳米尺度、纳米粒子、纳米相、纳米晶体或纳米机器。这一领域如今受到全世界的关注,国家纳米技术计划 (NNI) 即将启动。这一领域的起源可以追溯到 20 世纪 70 年代和 80 年代对活性物质(自由原子、团簇、活性粒子)的研究,以及新技术和仪器(脉冲团簇光束、质谱创新、真空技术、显微镜等)。人们对此兴奋不已,并蔓延到包括化学、物理、材料科学、工程和生物学在内的不同领域。这种兴奋是有道理的,因为纳米材料代表了物质的新领域,有趣的基础科学以及对社会有用的技术的可能性是广泛而真实的。尽管人们对纳米材料很感兴趣,但仍需要一本服务于基础科学界,尤其是化学家的书。本书的编写首先是为了作为“纳米化学”高级本科或研究生课程的高级教科书,其次是为了作为化学家和其他在该领域工作的科学家的资源和参考。因此,读者会发现这些章节是按照教师教授该科目的方式来编写的,而不仅仅是参考书。因此,我们希望本书能够用于教授纳米技术、材料化学和相关学科的许多高级课程。本书的内容如下:首先,详细介绍了纳米技术并简要介绍了历史。接下来是 Gunter Schmid 撰写的关于纳米金属的精彩章节、Marie Pileni 撰写的关于半导体的精彩章节以及 Abbas Khaleel 和 Ryan Richards 撰写的关于陶瓷的精彩章节。接下来的章节将更多地讨论特性,例如 Paul Mulvaney 的光学特性、Chris Sorensen 的磁性、编辑和 Ravi Mulukutla 的催化和化学特性、Olga Koper 和 Slawomir Winecki 的物理特性,以及 John Parker 的关于纳米材料应用的简短章节。编辑非常感谢这些章节的贡献作者,他们是这一新兴纳米技术领域的世界知名专家。他们的热情和辛勤工作值得赞赏。编辑还感谢他的学生和同事以及家人的帮助,感谢他们的耐心和理解。Kenneth J. Klabunde