微生物腐蚀 (MIC) 是由微生物代谢、腐蚀性化合物和金属之间的复杂相互作用引起的。MIC 已使用间歇反应器或循环回路系统或连续搅拌釜式反应器 (CSTR) 进行了广泛探索。由于营养限制以及影响微生物生长和生物膜形成的腐蚀产物和废物的积累,间歇系统和循环系统都可能提供令人困惑的结果。此外,CSTR 需要大量流体。为了克服这些缺点,我们开发了一种新型微流体微生物腐蚀模型“微流体 MIC 模型:杀菌剂研究”(图 1),由碳钢涂层玻璃载玻片组成,该载玻片粘合到透明聚合物聚二甲基硅氧烷 (PDMS) 内部的微通道上。该流动模型是一个连续的一次流通单元,类似于管道,其中 MIC
已完成的研究或研究的重要阶段,展示了 NASA 计划的结果,并包括大量数据或理论分析。包括汇编重要的科学和技术数据和信息,这些数据和信息被认为具有持续的参考价值。NASA 的对应方是 mr - 审查正式的专业论文,但对手稿长度和图形演示范围的限制不那么严格。
I.执行摘要财团:Corvallis Microfluidics Technology Hub(COLMIC)www.cormictechhub.org关键技术焦点区域(KTFAS):高性能计算,高级能源技术,高级材料,高级材料和制造业,生物技术。公共技术平台:微流体,其中硅或其他材料中的微观通道携带少量液体用于热分布,分配,混合或分析。地理边界:科瓦利斯,俄勒冈州的小城市统计区(MSA)与MSA合作伙伴(波特兰 - 南通 - 希尔斯伯勒,奥尔 - 瓦勒;塞勒姆;或; eugene-springfield,或; eugene-springfield,or and; and and; and and and and and and and and and and and and and and; and; eugene-springfield,and and and and and and and and and; eugene-springfield,and and and and and and obaly MSA,奥尔巴尼 - 黎巴嫩,奥尔巴尼 - 黎巴嫩和美国土著社区。为什么要微流体?微流体将推动生长并创造半导体冷却(降低温度并提高综合电路的性能),连续流动处理(化学合成以降低成本,可持续提高新材料)和生物技术(以革新诊断,治疗和药物开发革命))。为什么Corvallis?四家大型区域公司(HP,英特尔,NVIDIA,Thermo Fisher Scientific)加入了Cormic,因为微流体对其期货至关重要。此外,俄勒冈州的硅森林围绕着科瓦利斯(Corvallis),波特兰是美国半导体制造业中最集中的基因座。俄勒冈州立大学(OSU),俄勒冈大学(UO)和俄勒冈州健康与科学大学(OHSU)的联合学术企业将促进专业知识,创新,初创企业和多样化的劳动力。为什么现在?谁会受益?半导体行业正在突然过渡到综合电路(ICS)的液体冷却。连续流动加工(CFP)正在取代化学和制药行业中的分批加工,从而加速发现具有相关经济和环境优势的新材料。生命科学研究人员已经证明了许多微流体设备,这些设备预示了诊断和治疗方面的革命性进步。但是,商业化需要进一步的创新。我们估计,到2033年,科尔米奇将创造5,000至12,000个工作岗位,在农村服务,服务不足的俄勒冈地区的就业率很大,女性和有色人种的就业率低于平均水平。
量子涡旋是量子超流体中的拓扑缺陷,在宏观尺度上,这些阶段揭示了量子性。量子涡流物质是一个有趣而多学科的研究领域[1-3],它吸引了理论家和实验家。虽然在超级流体制度中深处的精力激励上,但涡流的凝结为理解相邻的非沉积阶段和相关的相变提供了自然框架[4-6]。在旋转整个系统的情况下,在低温下出现了超流体涡流中的丰度[7-10]。正如Abrikosov [11]在外部磁场中与II型超导体紧密相关的上下文中首先发现的,在热力学极限下,常规涡流晶体基态可以出现。它会自发打破(磁)翻译和旋转对称性。在二维极限中,对低能集体激发(称为Tkachenko Waves [12])的研究一直是广泛理论上的主题,如[13 - 24]这样的作品所证明的。此外,在冷原子实验中,在极低的温度下成功地进行了对Tkachenko波的实验观察[25]。值得注意的是,也有人建议Tkachenko模式可以解释脉冲星的动力学[26]。鉴于涡旋的两个横向笛卡尔坐标构成了一对规范的变量[8,27 - 29],因此涡旋代表了固有的模糊实体,其本质上的模糊实体与不成比例的面积与基本玻色子密度成反比。因此,随着晶体内的涡流密度接近玻色子密度的大小,涡旋位置中的量子机械波动与涡流之间的距离相当。粗略估计依赖于Lindemann标准和小规模的精确对角线数值模拟,表明当填充分数大约在1到10之间时,涡流晶体会在零温度下实现量子熔化[8]。在这里,填充分数在以下内容中称为ν,定义为玻色子密度n b和涡流密度,n v之间的比率。这种量子熔化现象的确切性质仍然很糟糕,代表了该领域的长期挑战。分形式弹性双重性[30 - 37]及其前身[38 - 42]提供了一种出色的框架,以研究可能的熔融机制,因为它自然融合了脱节和错位,这些脱位和位错是固体中拓扑缺陷[43]。一个人也可以轻松地掺入va-cancy和间质缺陷[31,34]。在这种形式主义中,量子熔化可以通过一系列的相变实现,其中动态缺陷场扮演了希格斯字段的作用。这种方法在[44]中率先进行的涡流晶体研究中发现了实际应用。除了对各种缺陷之间的静态相互作用的计算之外,这还发现了几个连续的量子希格斯过渡,这些过渡是由缺陷的凝结触发的。在本文中,我们提供了有关二维超氟涡流晶体量子熔化的新见解。值得注意的是,发现涡流晶体的量子熔化可能是由空缺或间质的凝结来提到的,导致最初在经典的有限限制性问题中研究的含量涡旋超固体的出现[45,46]。我们的起点是tkachenko模式的有效理论,在二次近似中,该理论降低了紧凑型标量场的Lifshitz理论[21,24,46,47]。这是快速旋转极限的超氟涡流晶体的良好粗粒描述,其中冷凝水仅占据了最低的Landau水平。在该领域理论中,我们讨论了对称范围的磁性顶点算子的命运,这些磁性顶点算子在特殊条件下与涡流晶体中的空位和间质缺陷相对应。从先前的工作中汲取灵感[5,48],我们确定哪种填充ν这样的磁性顶点操作员在重生群体(RG)sense
摘要:在迅速发展的人寿保险部门,加速承保(AU)和流体较低的承保已成为变革性的创新,这些创新重新定义了传统上缓慢而侵入性的承保过程。响应消费者对无缝,快速体验的需求不断增长,这些高级模型利用机器学习,预测性分析和非侵入性数据来源,例如电子健康记录(EHRS),财务数据和生活方式指标,以显着速度和精确评估风险,以消除常规医学检查的需求。本文研究了与验证这些系统相关的方法,测试策略以及挑战,强调了数据完整性,模型准确性,公平性,公平性和法规合规性的重要性。通过采用AU模型,保险公司可以提供更快的批准,个性化的承保范围和整体增强的客户体验,同时加速承销(AU)使获得人寿保险的机会使其更具包容性和易于使用。强大的,数据驱动的测试框架的战略实施可确保透明度和可靠性,使保险公司能够优化风险评估,简化运营并在不断发展的数字保险环境中保持竞争力。关键字:加速承保(AU),无效的承保,风险评估,自动决策,监管标准,基于方案的测试,偏见缓解
本次研讨会由伊尔默瑙工业大学、耶拿莱布尼茨光子技术研究所以及海利根施塔特生物加工和分析测量技术研究所联合举办。更多信息请访问:www.tu-ilmenau.de/ttd/cbm 和 www.tu-ilmenau.de/ttd/spm
撞击后 C 扫描 500 1000 2000 CP1B 8D 完成 500 完成 完成 完成 CP1B 7D 完成 500 完成 完成 完成 完成 CP2 8D 完成 500 完成 完成 完成 完成 CP2 2C 完成 800 完成 完成 完成 完成 CP3 6B 完成 500 完成 完成 完成 完成 CP3 8D 完成 1100 完成 完成 完成 完成 CP4 8C 完成 500 完成 完成 完成 完成 CP4 6C 完成 1100 完成 完成 完成 完成 CP4 2D 完成1100 完成 完成 完成 CP5 7E 完成 1100 完成 完成 完成 完成 CP6 8C 完成 1100 完成 完成 完成 完成 CP6 4D 完成 1100 完成 完成 完成 完成 CP7 C3 完成 500 完成 完成 完成 完成 CP7 D3 完成 800 完成 完成 完成 完成 CP8 2E 完成 500 完成 完成 完成 完成 CP8 4D 完成 800 完成 完成 完成 完成
Landau的照片也不完整,后来被其他人增加了。目前的理解是,氦原子确实经过bose凝结,而超流速速度是冷凝水波函数相的梯度。,但冷凝水不是超流体。只有大约10%的流体是0 K处的冷凝物,而所有冷凝物都是超氟。
摘要简介:由于生物医学的最新进展以及对疾病分子机制的越来越多的理解,医疗保健方法倾向于预防和个性化医学。因此,近几十年来,跨学科技术(例如微流体系统)的利用具有显着增加,以提供更准确的高通量诊断/治疗方法。方法:在本文中,我们将回顾微流体技术创新的摘要,以改善个性化的生物分子诊断,药物筛查和治疗策略。结果:微流体系统通过为流体流动,细胞的三维生长以及分子实验的小型化是在健康和治疗领域的有用工具。这些条件使潜力能够进行类似的研究;疾病建模,药物筛查和提高诊断方法的准确性。结论:由于其能够以较小的样本量,降低成本,高分辨率和自动化进行诊断测试,因此微流体设备已成为有前途的护理(POC)和个性化药物工具。
。CC-BY-NC-ND 4.0 国际许可,根据 (未经同行评审认证)提供,是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2020 年 10 月 8 日发布。;https://doi.org/10.1101/2020.08.24.260588 doi:bioRxiv 预印本