提供的数据是当前生产的典型数据,可能会发生特征的变化,用户所设想的申请产品的最终确定仅是他们的责任,有关进一步的信息,请访问+49(0)4661-93495-0,info@nf-oel.de或wwwwwwww.starkeundly.starparkeundlo&sehne.del starke&sohn nieb,gmbh, 2021
• SonyDADC 萨尔茨堡(制造) • Johnson and Johnson 贝尔斯威克/新不伦瑞克(研发/全球总部) • Philips 埃因霍温(研发) • IMT 瑞士(生产) • ST Microelectronics 米兰(研发) • National Panasonic 大阪(研发) • SIMTech 新加坡(研发/生产)鲁赫(研发) • Uni Twente/Micronit 恩斯赫德(研发) • UCSB/Stanford • UCSD/Illumina(总部) • Biomerieux(研发) • 中国科学院(中国) • 加州大学伯克利分校
1914 年,西奥多·卡鲁扎 (Theodor Kaluza) 又在几年后提出这一理论。诺德斯特伦 (Nordström) 发展了引入额外空间维度的引力理论 [2]。在他的理论中,额外维度与电磁学耦合。卡鲁扎利用五维流形(四个空间维度和一维时间维度)[3],将爱因斯坦广义相对论与电磁学统一起来。这些引力与电磁学的统一假设空间有四个维度而不是三个,这为进一步探索四维空间假设提供了足够的动力。促使本文所述研究的另一个重要成果是埃尔温·马德隆 (Erwin Madelung) 于 1926 年获得的研究成果。他从无旋无粘流的流体动力学方程推导出薛定谔方程 [4]。尽管马德隆在他的解释中没有将物理空间视为流体,但推导表明薛定谔方程与无旋流动的无粘性流体方程之间存在联系。
随着聚光太阳能发电 (CSP) 技术的进步,选择有效的传热流体 (HTF) 对于优化热效率和储能容量仍然至关重要。本综述简要概述了 CSP 应用中最常用的 HTF——熔盐、合成油、纳米流体和气态流体,重点介绍了它们独特的热物理性质、应用和性能特征。虽然熔盐和纳米流体在高温存储方面前景光明,但高熔点、腐蚀和成本限制等挑战仍然存在。通过创新的 HTF 配方和增强的材料兼容性来解决这些限制对于最大限度地提高 CSP 效率和可持续性至关重要。未来对先进 HTF 的研究可能会显著提高 CSP 性能,支持向可靠的可再生能源解决方案转变。
超分辨率(SR)生成对抗网络(GAN)有望在大型模拟(LES)中湍流闭合,因为它们能够准确地从低分辨率领域重建高分辨率数据。当前的模型培训和推理策略对于大规模的,分布式计算而不足以成熟,这是由于计算需求以及对SR-GAN的训练通常不稳定的,这限制了改进的模型结构,培训策略和损失功能定义的探索。将SR-GAN集成到LES求解器中进行推理耦合模拟也是评估其后验精度,稳定性和成本的必要条件。我们研究了SR-GAN训练和推理耦合LES的并行化策略,重点是计算性能和重建精度。我们研究了混合CPU – GPU节点体系结构的分布式数据并行培训策略,以及低/高分辨率子盒大小,全局批处理大小和歧视器准确性的相关影响。准确的预测需要相对于Kolmogorov长度尺度足够大的训练子箱。应注意训练批量规模,学习率,培训子箱数量和歧视者的学习能力的耦合效果。我们引入了一个数据并行SR-GAN培训和推理库,以进行异质体系结构,该架构可以在运行时在LES求解器和SR-GAN推理之间进行交换。我们研究了这种布置的预测准确性和计算性能,特别关注精确的SR重建所需的重叠(Halo)大小。同样,有效推理耦合LES的后验并行缩放受SR子域的大小,GPU利用率和重建精度的限制。基于这些发现,我们建立了指南和最佳实践,以优化SR-GAN湍流模型训练和推理耦合LES计算的资源利用率和并行加速,同时保持预测精度。
定制成像级镜头的原型制作和少量生产是困难且昂贵的,尤其是对于更复杂的非球面形状而言。流体形状最近被提议作为一种潜在的解决方案:它利用液体之间界面的原子水平平滑度,其中界面的形状可以通过边界条件,浮力控制和其他物理参数仔细控制。如果一种液体是树脂,则可以通过固化来“冷冻”其形状,从而产生固体光学元素。虽然流体形状是一个有前途的途径,但该方法产生的形状空间目前仅以偏微分方程的形式描述,这些方程与现有镜头设计过程不相容。更重要的是,我们证明现有的PDE不准确,不准确。在这项工作中,我们开发了由流体成型技术产生的形状太空镜片的新表述。它克服了以前模型的不准确性,通过可区分的实现,可以基于可区分的射线跟踪将最新的端到端光学设计管道集成到最新的端到端光学设计管道中。我们通过模拟以及初始物理原型广泛评估模型和设计管道。
本公司于 2012 年 2 月 16 日根据《1956 年公司法》在马哈拉施特拉邦孟买公司注册处注册成立为 Flash Forge Fluid Control Private Limited,注册号为 227023。本公司名称已根据 2012 年 9 月 21 日的特别决议更改为 CFF Fluid Control Private Limited。2012 年 10 月 19 日,马哈拉施特拉邦孟买公司注册处颁发了因名称变更而颁发的新的公司注册证书。此外,本公司状态已更改为公众有限公司,本公司名称已根据 2022 年 9 月 5 日的特别决议更改为 CFF Fluid Control Limited。2022 年 9 月 15 日,马哈拉施特拉邦孟买公司注册处颁发了因名称变更而颁发的新的公司注册证书。本公司的公司识别码为 U28990MH2012PLC227023。有关本公司名称变更和注册办事处变更的更多详情,请参阅本招股说明书草案第 116 页“历史和某些公司事项”一章。
芯片实验室 (LoC) 设备实验室程序的小型化以及向单细胞分析或器官芯片 (OoC) 系统等各种平台的转变正在彻底改变生命科学和生物医学领域。因此,微流体正在成为提高关键过程质量和灵敏度的可行技术。然而,尚未建立标准测试方法来验证微流体设备的基本制造步骤、性能和安全性。微流体技术的成功开发和广泛使用在很大程度上取决于社区在建立广泛支持的测试协议方面的成功。需要共识指南的一个关键领域是泄漏测试。由于微流体系统尺寸小、表面积与体积比高、流速低、体积有限以及短距离内压差相对较高,因此在防止和检测微流体系统中的泄漏方面面临着独特的挑战。此外,微流体设备通常采用异构组件,包括独特的连接器和流体接触材料,这可能使它们更容易受到机械完整性故障的影响。微流体系统与传统宏观技术之间的差异可能会加剧泄漏对微尺度性能和安全性的影响。为了支持微流体社区在产品开发和商业化方面的努力,确定微流体设备泄漏的共同方面并标准化相应的安全和性能指标至关重要。需要定量指标来在制造过程期间或之后提供质量保证。还需要实施特定于应用的测试方法来有效表征微流体系统中的泄漏。本综述讨论了评估微流体泄漏的不同方法、使用不同测试介质和材料的好处以及在整个产品生命周期中进行泄漏测试的效用。本文还讨论了可用于表征微流体设备泄漏的当前泄漏测试协议和标准测试方法以及潜在的分类策略。我们希望这篇评论文章能够激发学术界围绕气体和液体泄漏测试标准发展的更多讨论