深色发酵(DF)是一种生物学过程,能够从有机废物中产生氢气,这可以作为生物精炼厂中的基础发挥关键作用。,但仍需要优化DF的流体动力条件以增强气体液传质,从而减少了可溶性氢的自抑制作用。质量转移增强受到限制,因为对微生物的液压应力必须受到限制,并且该过程的经济可持续性必须保持。最近的结果表明,在层流和湍流方案之间的过渡区域中,DF增强了。为了更好地了解该制度中的3D流体动力特征,开发了一种改进的光学轨迹技术并将其应用于配备双型物件设备的2-L生物反应器。所提出的方法旨在同时使用三个摄像机来监测多达十个颗粒作为示踪剂的轨迹,但也能够在每个相机的2D图像中提供颗粒的实时位置,以最大程度地减少治疗后时间。应用了该方法,包括立体摄像机校准,实时和后处理以重建3D轨迹,并针对2D-PIV和CFD数据进行了验证。达成了良好的一致性,但是由于粒径,很难捕获附近壁和叶轮的区域。结果表明,与单个粒子作为示踪剂相比,使用五个颗粒的工作能够减少3-4的测量时间,而较高数量的示踪剂增加了伪像的镜头。
个性化的生物医学设备,例如微针阵列(地图),提供了有希望的透皮药物输送技术,为传统的皮下注射性注射提供了安全,无痛和自我管理的替代方案。尽管具有精确的治疗性释放潜力,但采用MAP的采用受到有效载荷能力,治疗多功能性和制造可伸缩性的挑战的限制。为了解决这些问题,我们将微流体通道设计与地图技术集成在一起,增强了其在可调卷中提供一系列有效载荷的功能,从液体疗法到固态尺寸。使用注射连续液体界面生产(ICLIP),一种新型的增材制造方法,我们制造了具有复杂设计的高分辨率微流体图。受到各种有毒动物的刺痛和尖牙的启发,我们开发了一种仿生的微针设计,可防止堵塞,增强机械强度并消除针头泄漏,从而提高治疗性递送效率。我们的技术可靠地提供了多个不同的有效载荷,启用了组合混合,并实现了固态有效载荷的重新确定。预告片
。CC-BY-NC 4.0国际许可证的永久性。根据作者/资助者提供的预印本(未经Peer Review的认证)提供,他已授予Biorxiv的许可证,以在2025年2月7日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.02.02.636143 doi:Biorxiv Preprint
软材料通过紧密模仿生物体的复杂运动和变形行为,在小型机器人应用中发挥着至关重要的作用。然而,传统的制造方法在制造高度集成的小型软设备方面面临挑战。在这项研究中,利用微流体技术精确控制反应扩散 (RD) 过程,以生成多功能和区室化的钙交联海藻酸盐微纤维。在 RD 条件下,生产出复杂的海藻酸盐纤维,用于磁性软连续机器人应用,具有可定制的功能,例如几何形状(紧凑或中空)、交联程度和磁性纳米粒子的精确定位(在核心内部、围绕纤维或一侧)。这种精细控制允许调整微纤维的刚度和磁响应性。此外,纤维内可化学裂解的区域能够在旋转磁场下分解成更小的机器人单元或卷起结构。这些发现证明了微流体在处理高度集成的小型设备方面的多功能性。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
自然和我们的日常生活都被微塑料和纳米塑料所包围。他们的存在对环境和生物的健康有潜在的风险。尽管塑料在工业领域的优势(例如低成本和多功能性)最初是发明的,但它们的降解会导致不容易监测或检测的小颗粒,并且可以渗透到体内,而在本质上可能会持续数百年。他们的检测,识别和分析对于确定所有人的危险水平至关重要。全球塑料产量的兴起导致环境中微塑料和纳米塑料的患病率不断增加。缺乏标准化的处理方法使管理环境影响的努力变得复杂。目前的状态以及未来几年的预测似乎黯淡,促使科学家和立法者加强了开发和实施更好的解决方案的努力。
摘要。本文研究了麦克斯韦混合纳米流体(Cu-Al 2 O 3 /水和CuO-Ag/水)在延伸薄片上的驻点处的情况。该问题的动机在于它在提高现代传热应用中的热效率方面具有潜在重要性,这对于优化制造工艺和节能技术至关重要。因此,本研究研究了非牛顿麦克斯韦纳米液体穿过混合对流边界层(BL)并传播热量通过包含混合纳米颗粒的收缩/拉伸表面。在当前的工作中,涉及两种不同类型的混合纳米流体:Cu-Al 2 O 3 /水和CuO-Ag/水。将铜颗粒(Cu)和氧化铜颗粒(CuO)混合到Al 2 O 3 /水和Ag/水纳米流体中以研究这两种类型。流动受到均匀磁场(MF)和驻点的影响。问题源于它们增强的导热性和传热能力,这对于提高先进冷却系统和涉及驻点流的工程应用中的能源效率至关重要。通过利用适当的变换,偏微分方程 (PDE) 被转换为常微分方程 (ODE)。原型利用四阶龙格-库塔 (RK-4) 方法结合射击技术进行计算分析。当前工作的成果对驻点流具有适用意义,例如核反应堆的冷却、支持者对微电子程序的冷却、拉丝、聚合物挤出和许多工程流体动力学应用。从理论和数值上研究了所选因素对温度、速度、传热速率和表面摩擦系数的影响。发现不同混合纳米粒子的存在以及其他参数的影响对速度和温度分布都起着重要作用。此外,驻点在液体流动中产生了分离极限,从而逆转了这些流动区域之间的磁场影响。 2020 数学科目分类:76A05、76D10、76W05、80A20、65L06 关键词和短语:混合纳米流体、非牛顿麦克斯韦流体、驻点、磁流体动力学、拉伸表面
SOLUTHERM™ EG LD 抑制纯乙二醇基传热流体采用最高品质的原材料制造而成。每种流体均采用最先进的抑制剂化学配方专门配制而成,可防止腐蚀,从而最大限度地降低流体成本并延长流体寿命。SOLUTHERM™ 流体不含硅酸盐,符合 ASTM 防腐标准;稀释度范围为 30% 至 70% EG。请注意,我们建议仅使用 RO(反渗透)或蒸馏水稀释以保持防腐性能。
SOLUTHERM™ PG HD 抑制纯丙二醇基传热流体采用最高品质的原材料制造而成。每种流体均采用最先进的抑制剂化学配方专门配制而成,可防止腐蚀,从而最大限度地降低流体成本并延长流体寿命。SOLUTHERM™ 流体不含硅酸盐,符合 ASTM 防腐标准;可提供 30% 至 70% PG 的稀释度。请注意,我们建议仅使用 RO(反渗透)或蒸馏水稀释以保持防腐效果。
当前的研究检查了在MHD和多孔材料的作用下,在拉伸表面上的Williamson流体流动。此外,还检查了不同特征,例如热源,粘性耗散,焦耳加热效果和化学反应的影响。还研究了溶质分层因子和温度的影响。部分微分方程用于表示问题的管理非线性方程。应用所需的相似性转换后,这些方程将转换为非线性普通微分方程的集合。Keller Box方法用于以数值方式求解结果方程。绘制速度,温度和浓度图可以检查不同参数的影响。此外,计算本地参数并将其与早期研究的发现进行了比较。结果显示兼容性。在威廉姆森,磁性和可渗透参数升高的情况下,速度的特征表现出降低的行为。在威廉姆森,磁性,辐射,焦耳加热,热源和eckert数的影响的情况下,温度的曲线表现出越来越多的趋势,而在prandtl数字中,相反的趋势是相反的趋势,热分层参数提高。在威廉姆森,磁性,渗透率参数和相反的行为的情况下,在化学反应,溶质分层,施密特数参数的情况下,检查了浓度曲线的增强。