加斯帕德·施尼茨勒是法国国际战略事务研究所 (IRIS) 的高级研究员,负责国防和安全工业项目和德国天文台。他专门研究欧洲国防政策和军备相关问题,目前的研究重点是国防工业战略、法德国防合作以及影响欧洲国防市场的关键趋势。在加入 IRIS 之前,加斯帕德曾担任法国国防部的前瞻性研究官员。
在过去十年中,“大数据”已成为学术界、专业界和媒体中无处不在的流行词。一些评论员称赞大数据是“21世纪的新石油”、“世界上最有价值的资源”和“当今所有大趋势的基础,从社交到移动、从云到游戏”。1 大数据分析的增长可以从市场的角度来解释。在供应方面,数据变得更容易获得,处理能力不断提高——正如摩尔定律在 20 世纪 70 年代所预测的那样。仪器和传感器、数字存储和计算、通信和网络的快速发展,包括 20 世纪 90 年代互联网的出现,推动了“大数据革命”2 的必然进程,生成和提供越来越多的数据。每天,人类直接或间接地产生 2.5 万亿兆字节的数据。3 随着从人类、机器和环境中获取的数据量越来越大,分析这些数据的诱惑也越来越大,这种现象有时被称为数据化。4 当前数据泛滥,受信息数字化程度的提高推动, 5 为数据挖掘提供了无数机会,数据挖掘是一套在各种情况下试图从数据集中提取隐藏模式的技术。6 这些新功能已经开始影响组织及其遵循的核心流程。“大数据”热潮也在政府内部获得了关注,包括情报机构,它们一直依赖数据源来收集原始数据
5。监管机制鼓励能源效率能源效率计划通过各种机制来利用公共和私营部门资源。一个主要的资金来源来自公用事业客户,客户账单上的少量费用支持更广泛的能源效率计划,以帮助消费者减少能源消耗并降低总体公用事业账单。公用事业效率计划为节能电器,气候援助,教育外展以及其他活动和服务提供了回扣。政府赠款和激励措施对于筹集能源效率工作也至关重要。在联邦,州和地方一级,政府以赠款,补贴或税收优惠的形式提供财政支持,以鼓励采用节能技术和实践。这些资金加强了提高建筑效率,升级工业流程并增强能源安全的项目的实施。
DSP 的 HCM 部门团队已在该领域活跃了 30 多年,这在人力资源技术领域几乎是永恒的。多年来,我们见证了新领域的兴衰、技术的出现和发展,以及商业模式的不断变化,这些变化通常被我们的 VC 朋友称为“支点”。尽管不断发生变化,但有一点不变,那就是新流行语层出不穷,这些流行语很少能提供清晰的解释。相邻商业模式的合并进一步复杂化了行业格局,从而产生了跨多个人力资源学科的平台。为了使行业格局更加清晰,我们开发了 DSP 人力资源技术分类法,将该领域分为代表就业生命周期不同阶段的简单组:
经常,科学的突破恰好发生在当前学科的边界,甚至超越这些学科的边界,从而导致跨学科专业的巨大扩散以及生产,传播和使用科学知识的许多新方式。尽管这些现象中的某些现象是由科学,研究和认知社区的内部动态产生的,但它们也反映了公众对创新以及经济和社会发展研究的作用日益增长的关注。因此,我们目睹了对公共科学操作系统的名副其实的范式转变的强有力的追求,将其从蓝色的研究中脱离,首先要处理和解决现实世界中的问题。在此之后,应将学术专家社区的关闭商店转变为一个开放的空间,该空间吸引了不同的研究人员,从业人员,用户,公民和利益相关者的受众和社区:公民科学,开放科学或科学2.0是流行语的流行语,以表征这种强大的趋势,以实现更高需求驱动的参与性研究。
1. 简介我们正处于“数字化转型”阶段。人们对此有着广泛的共识,但除此之外,事情变得模糊不清。这个阶段是什么时候开始的?我们预计它会持续多久?与数字化和数字化相反,数字化转型是什么?我怀疑数字化转型是“时髦的”,因为没有人能够向我解释“时髦”到底是什么意思。我们大多数人靠不太理解的流行语生存,有些人则靠它们茁壮成长。如果感觉处于劣势,你可以求助于工业 4.0 生态系统中的敏捷互联网工具,如 https://www.makebullshit.com/ 。可能存在更先进的工具,你可以输入一些关键词,然后得到一个令人印象深刻的流行词组。但你的管理层可能已经抢先了一步。但通常,这也是一个接受好主意,并根据需要从小规模开始的情况。例如:“在未来,我们将煮沸海洋,但作为有限功能的概念验证实现,我将煮一杯咖啡。” 在其他情况下,营销(包括科学的自我营销)巧妙地重新定义了目标以呈现成功案例:“我们在这里将高等微积分定义为将两个任意正一位数相加的能力。” 或者将智力定义为记住 5 个项目的能力,例如人、女人、男人、相机、电视。 接下来,让我们看一看这些新的高大上的术语,看看现实与这些流行语最初创造时的愿景相比有多大差距。 2. 流行语或更多? 2.1. 大数据 输入第一个流行语:大数据。让我们看看大数据的定义:“大数据是处理 [...] 过大或过复杂而无法用传统数据处理应用软件处理的数据集的领域。” COMPIT 2019 论文集为术语“大数据”提供了 64 个结果。平均每 9 页,就会有人使用这个术语。但大多数时候,使用“大数据”时指的是“大量数据”。例如,我们可以从船舶收集自动性能监控数据,并对这些数据进行一些统计分析。我们的船队中有 50 艘船,每 15 艘船记录一次数据集,每条记录由 10 个实数组成(速度、功率、吃水、纵倾等)。这使得大约有 1,000,000,000 个数字,或 4 GB 的单精度。这些数字可以通过普通的 USB 棒传输,并可以使用标准软件进行处理。在标准笔记本电脑上使用 Excel 打开可能需要一段时间,但读取和处理数据对于计算机科学家来说是标准工作。因此,根据定义,它不应该被称为大数据。您不需要分布式计算机,处理数据子集来处理它们,交换中间数据以收敛到一个共同的结果。例如,如果它真的是大数据,您就会这样做。非常
1. 简介我们正处于“数字化转型”阶段。人们对此有着广泛的共识,但除此之外,事情变得模糊不清。这个阶段是什么时候开始的?我们预计它会持续多久?与数字化和数字化相反,数字化转型是什么?我怀疑数字化转型是“时髦的”,因为没有人能够向我解释“时髦”到底是什么意思。我们大多数人靠不太理解的流行语生存,有些人则靠它们茁壮成长。如果感觉处于劣势,你可以求助于工业 4.0 生态系统中的敏捷互联网工具,如 https://www.makebullshit.com/ 。可能存在更先进的工具,你可以输入一些关键词,然后得到一个令人印象深刻的流行词组。但你的管理层可能已经抢先了一步。但通常,这也是一个接受好主意,并根据需要从小规模开始的情况。例如:“在未来,我们将煮沸海洋,但作为有限功能的概念验证实现,我将煮一杯咖啡。” 在其他情况下,营销(包括科学的自我营销)巧妙地重新定义了目标以呈现成功案例:“我们在这里将高等微积分定义为将两个任意正一位数相加的能力。” 或者将智力定义为记住 5 个项目的能力,例如人、女人、男人、相机、电视。 接下来,让我们看一看这些新的高大上的术语,看看现实与这些流行语最初创造时的愿景相比有多大差距。 2. 流行语或更多? 2.1. 大数据 输入第一个流行语:大数据。让我们看看大数据的定义:“大数据是处理 [...] 过大或过复杂而无法用传统数据处理应用软件处理的数据集的领域。” COMPIT 2019 论文集为术语“大数据”提供了 64 个结果。平均每 9 页,就会有人使用这个术语。但大多数时候,使用“大数据”时指的是“大量数据”。例如,我们可以从船舶收集自动性能监控数据,并对这些数据进行一些统计分析。我们的船队中有 50 艘船,每 15 艘船记录一次数据集,每条记录由 10 个实数组成(速度、功率、吃水、纵倾等)。这使得大约有 1,000,000,000 个数字,或 4 GB 的单精度。这些数字可以通过普通的 USB 棒传输,并可以使用标准软件进行处理。在标准笔记本电脑上使用 Excel 打开可能需要一段时间,但读取和处理数据对于计算机科学家来说是标准工作。因此,根据定义,它不应该被称为大数据。您不需要分布式计算机,处理数据子集来处理它们,交换中间数据以收敛到一个共同的结果。例如,如果它真的是大数据,您就会这样做。非常
1. 简介我们正处于“数字化转型”阶段。人们对此有着广泛的共识,但除此之外,事情变得模糊不清。这个阶段是什么时候开始的?我们预计它会持续多久?与数字化和数字化相反,数字化转型是什么?我怀疑数字化转型是“时髦的”,因为没有人能够向我解释“时髦”到底是什么意思。我们大多数人靠不太理解的流行语生存,有些人则靠它们茁壮成长。如果感觉处于劣势,你可以求助于工业 4.0 生态系统中的敏捷互联网工具,如 https://www.makebullshit.com/ 。可能存在更先进的工具,你可以输入一些关键词,然后得到一个令人印象深刻的流行词组。但你的管理层可能已经抢先了一步。但通常,这也是一个接受好主意,并根据需要从小规模开始的情况。例如:“在未来,我们将煮沸海洋,但作为有限功能的概念验证实现,我将煮一杯咖啡。” 在其他情况下,营销(包括科学的自我营销)巧妙地重新定义了目标以呈现成功案例:“我们在这里将高等微积分定义为将两个任意正一位数相加的能力。” 或者将智力定义为记住 5 个项目的能力,例如人、女人、男人、相机、电视。 接下来,让我们看一看这些新的高大上的术语,看看现实与这些流行语最初创造时的愿景相比有多大差距。 2. 流行语或更多? 2.1. 大数据 输入第一个流行语:大数据。让我们看看大数据的定义:“大数据是处理 [...] 过大或过复杂而无法用传统数据处理应用软件处理的数据集的领域。” COMPIT 2019 论文集为术语“大数据”提供了 64 个结果。平均每 9 页,就会有人使用这个术语。但大多数时候,使用“大数据”时指的是“大量数据”。例如,我们可以从船舶收集自动性能监控数据,并对这些数据进行一些统计分析。我们的船队中有 50 艘船,每 15 艘船记录一次数据集,每条记录由 10 个实数组成(速度、功率、吃水、纵倾等)。这使得大约有 1,000,000,000 个数字,或 4 GB 的单精度。这些数字可以通过普通的 USB 棒传输,并可以使用标准软件进行处理。在标准笔记本电脑上使用 Excel 打开可能需要一段时间,但读取和处理数据对于计算机科学家来说是标准工作。因此,根据定义,它不应该被称为大数据。您不需要分布式计算机,处理数据子集来处理它们,交换中间数据以收敛到一个共同的结果。例如,如果它真的是大数据,您就会这样做。非常
1. 简介我们正处于“数字化转型”阶段。人们对此有着广泛的共识,但除此之外,事情变得模糊不清。这个阶段是什么时候开始的?我们预计它会持续多久?与数字化和数字化相反,数字化转型是什么?我怀疑数字化转型是“时髦的”,因为没有人能够向我解释“时髦”到底是什么意思。我们大多数人靠不太理解的流行语生存,有些人则靠它们茁壮成长。如果感觉处于劣势,你可以求助于工业 4.0 生态系统中的敏捷互联网工具,如 https://www.makebullshit.com/ 。可能存在更先进的工具,你可以输入一些关键词,然后得到一个令人印象深刻的流行词组。但你的管理层可能已经抢先了一步。但通常,这也是一个接受好主意,并根据需要从小规模开始的情况。例如:“在未来,我们将煮沸海洋,但作为有限功能的概念验证实现,我将煮一杯咖啡。” 在其他情况下,营销(包括科学的自我营销)巧妙地重新定义了目标以呈现成功案例:“我们在这里将高等微积分定义为将两个任意正一位数相加的能力。” 或者将智力定义为记住 5 个项目的能力,例如人、女人、男人、相机、电视。 接下来,让我们看一看这些新的高大上的术语,看看现实与这些流行语最初创造时的愿景相比有多大差距。 2. 流行语或更多? 2.1. 大数据 输入第一个流行语:大数据。让我们看看大数据的定义:“大数据是处理 [...] 过大或过复杂而无法用传统数据处理应用软件处理的数据集的领域。” COMPIT 2019 论文集为术语“大数据”提供了 64 个结果。平均每 9 页,就会有人使用这个术语。但大多数时候,使用“大数据”时指的是“大量数据”。例如,我们可以从船舶收集自动性能监控数据,并对这些数据进行一些统计分析。我们的船队中有 50 艘船,每 15 艘船记录一次数据集,每条记录由 10 个实数组成(速度、功率、吃水、纵倾等)。这使得大约有 1,000,000,000 个数字,或 4 GB 的单精度。这些数字可以通过普通的 USB 棒传输,并可以使用标准软件进行处理。在标准笔记本电脑上使用 Excel 打开可能需要一段时间,但读取和处理数据对于计算机科学家来说是标准工作。因此,根据定义,它不应该被称为大数据。您不需要分布式计算机,处理数据子集来处理它们,交换中间数据以收敛到一个共同的结果。例如,如果它真的是大数据,您就会这样做。非常