ThreeBond 的各向异性导电膏 (ACP) 是一种液体材料,由均匀分散在高绝缘性粘合剂成分中的导电颗粒组成。ACP 是一种功能性材料,通过丝网印刷工艺中的应用和干燥产生各向异性导电膜。它能够通过数十秒的热压工艺在物理连接处实现以下所有三个动作: (1) 在电子元件之间形成电连接; (2) 保持相邻电极之间的绝缘; (3) 粘合和固定。ThreeBond 在过去 30 年中一直致力于与 ACP 相关的研发,推出的产品在热封连接器、显示设备、手机背光、薄膜开关和触摸屏等市场上广受好评。在此期间,越来越先进的高功能电子元件的开发大大改变了人们对 ACP 的期望。除了高可靠性和功能性之外,市场现在还要求更高的可用性、更高的长期可存储性以及与环境标准的兼容性,例如无卤素*1 和无甲苯产品。本期讨论了我们的 ACP 与其他连接器材料的区别,并论证了 ACP 的优越性。它还介绍了为满足市场需求和环境要求而开发的产品(ThreeBond3373 系列)。*1:氯 < 900 ppm、溴 < 900 ppm、氯 + 溴 < 1,500 ppm 此后,ThreeBond 将缩写为“TB”。
Jun 13, 2024 — 功能材料事业部拥有先进的火法和湿法冶金工艺,采用侧吹炉工. 艺、真空蒸馏工艺、以及溶剂萃取、离子交换、电解等先进工艺,回收. 和精炼各种含稀散金属固体、浆料和溶液。
摘要:本文重点介绍一种新型铜镍厚膜电阻浆料,该浆料专为实现低欧姆功率电阻而设计和实验开发。这种铜镍浆料设计用于厚印刷铜导体,与传统的钌基厚膜电阻浆料相比,可在氮气保护气氛中烧结。铜镍浆料由铜和镍微粒、玻璃粘合剂颗粒和有机溶剂组合制成,并针对在氮气气氛中烧结进行了优化。本文详细介绍了铜镍浆料的成分及其热性能(通过同步热分析验证)、干燥和烧结铜镍膜的形态描述以及最终印刷电阻的电参数。通过电子显微镜和元素分布分析证明,铜和镍微粒在烧结过程中扩散在一起并形成均匀的铜镍合金膜。该薄膜具有低电阻温度系数 ± 45 × 0 − 6 K − 1 和低薄层电阻值 45 m Ω /square。经验证,配制的铜镍浆料可氮烧,并且与厚印刷铜浆料具有良好的兼容性。这种组合允许实现直接集成低欧姆电阻器的功率基板。
问题更加复杂的是,对成本效益的日益关注推动了提高所供应浆料浓度的趋势 • 更高的浆料浓度需要特殊的混合和处理程序 • 更高的固体浓度可能导致更高程度的分层和额外的预混合要求 • 更高的固体和化学浓度可能会影响浆料的保质期 • 增加稀释率需要更精确的 SDS 混合设备
CMP 溶液在半导体技术高速公路中发挥着不可或缺的作用。它们是高密度集成电路生产中必不可少的一步。CMP 溶液是由许多成分组成的复杂分散体。这些胶体系统的生产和稳定性非常复杂且难以预测,因此必须在生产过程中甚至在最终发货之前对其进行监控。一些 CMP 悬浮液表现出独特的行为,它们受剪切和机械应力的影响,导致不可逆的聚集。这些低水平的聚集物通常会在晶圆加工过程中造成划痕,有时直到生产进行到很晚才被发现,从而给最终用户带来重大的经济损失。AccuSizer ® 在 CMP 浆料制造和使用的整个产品链中一直发挥着重要作用,并且将继续发挥重要作用。从原材料供应商、CMP 浆料制造商、浆料分销供应商、过滤器供应商到芯片制造商,Entegris 和 AccuSizer 50 多年来一直在积极检测和提供有关好浆料和坏浆料的信息。
摘要 通过三维(3D)打印制备多孔金属因其开放孔隙、定制化潜力而受到众多领域的广泛关注,但粉末床熔合技术制备的致密内部结构无法满足多孔材料在大比表面积需求场景下的特性。本文提出了一种通过粉末改性和数字光处理(DLP)3D打印多尺度多孔内部结构钛支架的策略。钛粉经改性后与丙烯酸树脂复合并保持球形。与原始粉末浆料相比,改性粉末浆料表现出更高的稳定性和更好的固化特性,且固含量为45vol%的改性粉末浆料的深度灵敏度提高了约72%。随后将固含量达到45vol%的浆料通过DLP 3D打印打印成绿色支架。烧结后,支架具有大孔(孔径约为 1 毫米)和内部开放的微孔(孔径约为 5.7–13.0 µ m)。此外,这些小尺寸(约 320 µ m)支架保留了足够的抗压强度
制备浆料时,溶剂干燥后会对涂层的涂层重量产生重大影响。可以在制备浆料之前估算混合物的固体含量,但为了获得更准确的值,可以使用水分分析仪,例如 Ohaus MB120 (g)。这将加热样品以去除溶剂,同时记录其质量,一旦样品的质量停止下降,就可以给出固体含量重量百分比。
AdmaPrint 原料采用感光树脂和陶瓷粉末固体(称为浆料)的混合物特殊配制而成。使用光固化和浆料可以在印刷产品中实现高分辨率和非常精细的表面粗糙度。此外,它还可以防止与使用干粉有关的健康危害和(交叉)污染。AdmaPrint 原料可用于打印复杂的几何形状、大型和精细的结构,从而产生各种功能产品。
ISTFA 2023:第 49 届国际测试和故障分析研讨会论文集,2023 年 11 月 12 日至 16 日,美国亚利桑那州凤凰城 https://doi.org/10.31339/asm.cp.istfa2023p0265