基于运动的分层方程(HEOM)计算,我们从理论上研究了连接到两个储层的三角形三量子点(TTQD)环的相应控制。我们最初通过添加偏置电压并进一步调节量子点之间的耦合强度来证明,偏置引起的手性电流将通过顺时针向逆时针方向转换,并触发前所未有的有效霍尔角。转换非常快速,相应的特征时间为80-200 ps。另外,通过添加磁性弹力来补偿原始系统中的手性电流,我们阐明了施加的磁性环与浆果相之间的关系,该相位可以直接测量手性电流并揭示磁电耦合关系。
一个人可以使用描述性命名法(例如“量子波方程”)或同名命名法(对于同一示例,“schrödinger方程”)。后者更好地融入了讲故事的方法,尽管必须始终在某个地方提供描述!在这里,为了方便“热力学III几何”特刊的读者,我们欣赏了有关各种复杂系统的“浆果阶段”分析的非常大的文献。这不是特刊的编辑摘要,而是试图将与特殊问题相关的技术领域连接起来,目前几乎完全断开了连接。特别是,一组工人解决了“定量的几何热力学”,因此[1],另一个工人解决了光学系统[2],而另一批则解决了快速/慢速动态系统[3]。令人惊讶的是,这些都是正式相关的,在这里,我们希望给出某种连贯的概述,尤其是这些领域,尤其是这些关系。在这个通用场中进行了多少工作是非凡的,因此此“审查”只是指示。它强调并不详尽。如Gu等人。[4]指出,“当经典或量子系统经历其参数空间缓慢变化控制的环状进化时,它获得了一种拓扑相位因子,称为几何或浆果阶段,这揭示了量子力学中的量规结构”。“ Hannay的角度”是此额外量子相[5]的经典对应物,从旋转顶部的优雅处理中可以清楚地看出[6]。[8],也有助于总结了该领域)。量子几何阶段和经典的Hannay角度确实密切相关,这是通过最近的工作确认的断言[7]。aharonov – bohm效应(由零幅度的字段引起的波函数相移的奇怪现象)到目前为止已经进行了充分的研究。甚至被认为是对重力场的物质波的适当时机的相移(参见Oversstreet等人。这种相移被称为“浆果”,1984 [2]或“几何阶段”之后的“浆果阶段”(使用Berry首选的描述性命名法,他指出了包括Pancharatnam在内的许多杰出贡献者,包括Pancharatnam [9])。Berry最初对绝热系统进行了处理,但后来意识到对非绝热情况的概括是“直接的” [10]。这也用摩尔[11]优雅地解释了Floquet定理(固态物理学家称为Bloch定理)。摩尔指出,“浆果阶段”也被称为“ aharonov – anandan阶段”,因为他们的治疗实际上是去除绝热限制的第一个[12],尽管似乎(非绝热)Aharonov – Aharonov – Anandan阶段可能与(Adibiabatic)
摘要。变形Jaynes – Cummings模型(JCM)在量子光学元件中具有物理重要性。因此,我们研究了非线性JCM,包括强度依赖性耦合常数和额外的KERR项。在温度t处,假定腔体在热平衡中,并具有热储存液。使用封闭的代数的发电机在限制情况下还原为SU(1,1)和Heisenberg – Weyl代数,并考虑总兴奋数为运动常数,Hilbert Space的总Hilbert Space分解为两个子空间。因此获得了特征值和相应的特征向量。我们得出了热密度矩阵,并使用消极措施分析了实现和热纠缠。此外,我们研究了非线性原子 - 场系统的浆果相,并探讨了非线性对量子相变(QPT)点和纠缠的影响。发现变形参数可以强烈影响实现,负性和QPT点。
每份营养事实:卡路里:300 |总脂肪:13 g |饱和脂肪:1.5 g钠:50 mg |总碳水化合物:44 g |饮食纤维:12 g |蛋白质:8 g适应|今天爱一个食谱,请访问www.nutrition.va.gov