van der waals异质结构中的Moiré超级晶格代表了高度可调的量子系统,在多体模型和设备应用中都引起了极大的兴趣。然而,在室温下,Moiré电位对光物质相互作用的影响在很大程度上仍然没有。在我们的研究中,我们证明了MOS 2 /WSE 2中的Moiré潜力促进了室温下层间激子(IX)的定位。通过执行反射对比光谱,我们证明了原子力显微镜实验支持的原子重建在修饰内部激子中的重要性。降低扭转角时,我们观察到IX寿命会更长,并且发光增强,表明诸如缺陷之类的非辐射衰减通道被Moiré电位抑制。此外,通过将Moiré超晶格与硅单模腔的整合,我们发现,使用Moiré捕获的IXS的设备显示出明显较低的阈值,与利用DelaCalized IXS的设备相比,较小的一个数量级。这些发现不仅鼓励在升高温度下在Moiré超晶格中探索多体物理学,而且还为利用光子和光电应用中的这些人工量子材料铺平了道路。
光纤基础架构对于处理从军事智能到个人信息的广泛敏感数据至关重要。近年来,这些系统对这些系统的破坏尝试增加,以及未经授权的数据拦截的风险,这对量子计算的进步加剧了[1,2]。光纤特别容易受到窃听攻击的影响,其中未经授权的光耦合技术(例如evaneScent耦合,剪切,V-Grove剪切和微宏弯曲[3,4)可用于拦截数据。监视光电水平是检测窃听攻击的一种方法,但它可能不适用于导致最小或无法检测到的功率水平下降的攻击[5]。比光学功率跟踪更复杂的技术涉及监测接收器的极化状态变化,以使窃听尝试的正常系统变化。早期工作[6]使用分布式光纤传感(DFO)引入了一个系统,该系统可以通过使用已安装的光纤电缆触摸或操纵围栏来检测签名。但是,由于纤维杂质而依赖瑞利和布里鲁因反向散射,使该溶液复合物。此外,需要高速脉冲激光器以基于反向散射脉冲延迟确定漏洞的位置,再加上二氧化双流器以滤除放大的自发噪声的要求,并以其高成本进行贡献。1a)。[7]中的工作研究了不同纤维事件的极化特征,因为在特定时间和频率窗口中极化的序列变化,通过处理Poincar´e球中的极化状态得出(请参阅图通过窃听和有害事件产生的签名是在独特的情节中视觉的,被称为瀑布,使人类安全操作员可以在视觉上区分合法和未经授权的活动。这是一种比[6]的方法更简单,更具成本效益的恶意活动检测方法。然而,由于需要分析瀑布地块的人类专家,因此基于可视化的技术具有有限的适用性和可伸缩性。为了克服现有人类依赖性解决方案的可伸缩性和成本限制,我们引入了一种使用机器学习(ML)算法来分析极化特征的新方法。本文是第一个针对三种电缆类型进行实验收集和分析包含窃听攻击以及其他潜在有害和无害事件的数据集的。我们的方法论是从正常操作条件和无害事件中分析和分析窃听和潜在有害事件的过程,从而允许潜在的大规模光网络部署。提出的方法以92.3%的精度成功地分离了签名。