一些患有阅读障碍的孩子表现出预阅读的听觉和语音处理困难。此外,左听觉皮层结构可能与家庭阅读障碍的风险有关,而不是阅读结果。但是,尚不清楚听觉和语音处理和听觉皮层结构在多大程度上介导家庭风险与阅读之间的关系。在当前的纵向研究中,我们研究了家庭风险(使用父母阅读问卷测量)和预测三年级单词阅读中的听觉措施的作用。我们测量了162名读者的听觉和语音处理,家庭风险有所不同。在其中129个,我们还获得了结构磁共振成像(MRI)。我们量化了双边颞叶(TTG(S))的表面积和重复模式,以及双侧平面颞叶(PT)的表面积。我们发现了预读的听觉和语音处理,左FIRST TTG的表面积和双侧PT以及左TTG重复模式的影响对以后阅读。这些度量上的较高的预读值可以预测更好的单词读数。尽管我们还发现了一些证据表明家庭风险对听觉和语音处理的影响,但后者的措施并未介导家庭风险和随后的阅读之间的牢固关系。我们的研究表明了预读听觉和语音处理以及听觉皮层解剖学的重要性,以便以后阅读。对阅读开发过程中这种相互关系的更好理解将有助于早期诊断和干预,考虑到一般人群中家庭风险的连续性,这一点尤其重要。
摘要 我们的大脑不断对感官输入做出预测,并将其与实际输入进行比较,通过大脑区域的层次结构传播预测误差,随后更新对世界的内部预测。然而,预测编码的基本特征、层次深度的概念及其神经机制仍未得到充分探索。在这里,我们结合功能性磁共振成像 (fMRI) 和高密度全脑皮层电图 (ECoG),在听觉局部-全局范式中研究了狨猴的预测听觉处理的层次深度,其中刺激的时间规律被设计为两个层次。预测误差和预测更新被视为对听觉不匹配和遗漏的神经反应。使用 fMRI,我们确定了听觉通路上的层级梯度:中脑和感觉区域代表局部、较短时间尺度的预测处理,随后是联想听觉区域,而前颞叶和前额叶区域代表整体、较长时间尺度的序列处理。互补的 ECoG 记录证实了皮质表面区域的激活,并进一步区分了预测误差和更新信号,它们分别通过假定的自下而上的 γ 和自上而下的 β 振荡传输。此外,由于输入缺失而引起的遗漏反应仅反映了层级预测编码框架所特有的两个预测信号水平,证明了听觉、颞叶和前额叶区域自上而下的层级预测过程。因此,我们的研究结果支持分层预测编码框架,并概述了如何使用神经网络和时空动态来表示和安排狨猴大脑中听觉序列的分层结构。
摘要 — 听觉注意检测 (AAD) 试图从多人说话场景(例如鸡尾酒会)中的 EEG 信号中检测出被关注的语音。由于 EEG 通道反映了不同大脑区域的活动,因此面向任务的通道选择技术可以提高脑机接口应用的性能。在本研究中,我们提出了一种软通道注意机制,而不是硬通道选择,通过优化听觉注意检测任务来导出 EEG 通道掩模。神经 AAD 系统由神经通道注意机制和卷积神经网络 (CNN) 分类器组成。我们在公开数据库上评估了所提出的框架。对于 64 通道 EEG,我们在 2 秒和 0.1 秒决策窗口下分别实现了 88.3% 和 77.2%;对于 32 通道和 16 通道 EEG,我们在 2 秒决策窗口下分别实现了 86.1% 和 83.9%。所提出的框架在所有测试用例中都远远优于其他竞争模型。
b'听力测试纯音测听(听力测试)此测试确定您能听到声音的音量必须达到多大。测试期间,将以不同音量呈现低频和高频音调。您将被要求确认何时能够听到声音。测试将单独评估每个频率。测试将使用插入式耳机(放入耳道的泡沫插入物)、耳罩和/或耳后骨头进行。这允许测试确定听力问题是源于内耳故障(感音神经性听力损失)还是源于声波传输到内耳的问题(传导性听力损失)或两者兼而有之(混合性听力损失)。在许多情况下,有必要将声音或噪音引入未测试的耳朵。这种分散注意力的方式使听力学家能够确保在评估的耳朵中听到测试音。 (时间 20 到 30 分钟)言语听力测试 这些测试用于评估您的耳朵对所听到内容的理解能力。 通过耳机或扬声器呈现两组不同的单词列表。 一种测试以不同的响度级别管理单词列表。 它用于确定您的耳朵第一次接收语音的声级。(言语接收阈值) 第二组单词使用纯音听力检查中确定的阈值来设置呈现的声级。 这样,我们可以确定您的耳朵听到了这些单词。 然后,通过呈现一组单词,我们可以确定您的耳朵对所听到内容的理解能力。(言语辨别分数)(时间 15 到 20 分钟) 阻抗和声反射测试 这组测试用于评估中耳结构和听觉神经的声音传输特性、耳咽管的工作情况、中耳肌肉的工作情况以及中耳压力的状态。 将一个小耳塞插入耳道。耳中会传来低沉的嗡嗡声。嗡嗡声的响度可能有所不同,有时听起来可能很大。此外,还会引入微小的压力变化。这些测试中获得的信息不需要您的回应。(时间 15-20 分钟)'