八月 (No.8) 现场试验表明不锈钢液体肥料服务具有耐腐蚀性,Thomas F. Shaffer, Jr. ............. 8 通过薄膜持久性试验评估油田腐蚀抑制剂,Eben D. Junkin, Jr., D.R.Fincher ........................ 18 单乙醇胺溶液的抑制作用,J.R. Mottley, D.R.Fincher .................................................................... 20 抑制剂不适用于控制除冰盐引起的汽车腐蚀,J.D.Palmer ......................................... 31 更多关于抑制剂的文章 ........................................................ 33 改进的冷凝水试验加速抑制剂评估,Van Hong ......................................................... 36 油田盐水中亚硫酸盐除氧伴随的溶解度因素,C.C.Templeton, S.S. Rushing, Jane C. Rodgers ............................................................. 42 锅炉酸洗抑制剂评估,L.T.Overstreet ............................................................................. 48 改进的锅炉酸溶液可去除氧化物而不会产生沉淀物,L.G.McLaughlin ........................................... 52 实验室仪器测试压力和速度对抑制盐酸中油田管道腐蚀的影响,W.E.Billings, J.A.Know, David Morris ................................ 58 阳极保护可防止因腐蚀产生的氢气引起的磷酸罐爆炸,Olen L. Riggs, Jr. ................................................................ 63 煤焦油涂层测试:第 5 部分 - 海水中的阴极保护,W.F.Fair, Jr., R.B.Teel ................................. 66 腐蚀检测的无损检测方法,C.E.Lautzenheiser ......................................................... 72 钢或混凝土储罐内部的表面处理,NACE 技术委员会 T-6F 报告 ...................... 9 6 新的化学工艺涂层单个纤维 ................................ 77 用于测量井下腐蚀的环技术 .......................... 80 用于保护喷气式飞机尾翼的石棉毡 ................................ 82
3. 程序。精细和粗泄漏测试应按照规定测试条件的要求和程序进行。测试顺序应为精细泄漏(条件 A 或 B 或 C),然后是粗泄漏(条件 C、、C、、D 或 E),除非 C 与 A、B 或 C 同时使用。当有规定时(见 4),测试后的测量应按照泄漏测试程序进行。当规定的弹压超过微电路封装能力时,可以使用其他压力、暴露时间和停留时间条件,只要它们满足适用的泄漏率、压力、时间关系,并且只要在任何情况下施加至少 30 psia(2 个绝对大气压)的弹压,或者对于条件 C,在任何情况下施加至少 10 psi 的差压测试压力。当使用测试条件时,不需要进行粗泄漏测试。但是,不得用于固定封装所需的密封测试。当使用批量测试(一次在泄漏检测器中放置多个设备)执行测试条件 A 或 B 和拒收条件 OWIS 时,应将其记录为批次失败。如果批次中的所有设备在从示踪气体加压室取出后一小时内重新测试,则可以对每个设备进行一次单独测试以进行验收。仅对于条件 B,设备可以进行批量重新测试以进行验收,前提是所有重新测试都在从示踪气体加压室取出后一小时内完成。仅对于条件 C,经过批量测试并显示拒收条件的设备可以使用此处 3.3.3.1 的程序单独重新测试一次,但如果设备在完成第一次测试后 20 秒内浸入检测器液体中,并且它们一直留在液体中直到重新测试,则无需重新加压。仅对于条件 C 和 C,包装必须满足 3.6 中定义的硬度要求。
这些说明是对提交文件中提供的信息的补充:o 用户操作和维护手册以及制造商的制冷机测试报告应在单独的传输中发送。提供 BROAD 双级直燃吸收式制冷机,包括以下内容 - o 机器应为完整的吸收器包,配有工厂接线,包括热交换器、控制面板、12 英寸彩色触摸屏、带燃气管路的动力火焰低 NOx 燃烧器(散装)和附加真空泵(散装)。o 燃烧器应具有工厂相互 (FM) 批准和 UL 列出的燃气管路。o 燃烧器应为强制通风型,并具有完全调节功能。o 燃烧器应配备所有必要的控制装置,例如压力调节器、开关、控制装置、点火系统以及正确和安全运行所需的其他装置。o 燃烧器应与冷水机组控制系统和所有其他必需的安全功能连接。o 机器的主壳体和高温发生器壳体均应采用优质碳钢制成。o 燃烧室应采用锅炉质量钢板制成。o 机器应进行喷丸处理以消除焊缝应力,并进行静电喷漆。o 工厂对冷表面(采用 0.79 英寸 K-flex 泡沫绝缘材料)和热表面(采用 2 英寸玻璃纤维绝缘材料)进行绝缘,最大 K 值为 0.26。 o 用于蒸发器、吸收器、冷凝器、低温发生器、高温发生器和溶液热交换器的热交换器。o 所有热交换器管应扩展为管板并可更换。o 直接与溴化锂 (LiBr) 溶液接触的内部组件(例如挡板和喷淋头)应由不锈钢制成。o 溴化锂溶液应含有腐蚀抑制剂钼酸锂,以尽量降低装置溶液侧的金属腐蚀率。o 溶液热交换器应为不锈钢板式热交换器,接缝处应采用连续电阻焊。o 冷凝器和吸收器之间的交叉管应由 BROAD 提供。o 机器应在冷凝器、吸收器的两端以及主壳体蒸发器部分的一端配备 O 形圈密封、铰链式检修船用水箱,以便于检修管束。水箱的额定压力应为 150 psig,测试压力为 187 psig。o 应使用并密封视镜和阀门,以保护机器的密封完整性。
编号1 *电子捕获量计的开发进度报告。W. R. Glongstun,1943年7月。编号2 *一个项目,用于测试压力模式对预测的潜在有用性。H. W. Norton,G。W。Brier和R. A. Allen,1944年1月。编号3 *关于在某些地区和期间之间间隔的暴风雨期间持续时间的初步报告。L. L. Weiss,1944年1月。编号4 *五天平均表面图与其组件每日图之间的某些关系。C. B. Johnson,1944年1月。编号5改进预测趋势方法。P. F. Clapp,1943年7月。编号6(未分配。)编号7 *在深度低点以南的新移动中心的形成。R. C. Gentry,1944年1月。编号8 *对10,000英尺高的预测流量模式的轨迹方法进行了研究。H. G. Dorsey和G. W. Brier,1944年1月。编号9 *关于格陵兰,冰岛和英格兰停滞高点的初步报告,以及7月和8月的白令海和阿拉斯加。R. C. Gentry和L. L. Weiss,1944年1月。 编号 10 *伦敦温度的持久性。 H. W. Norton和G. W. Brier,1944年1月。 编号 11 *选择“最佳”预测的技能。 G. W. Brier,1944年1月。 编号 关于上空空气中跨压力和温度变化的12个注释。 R. C. Gentry,1944年1月。 (未出版。) 编号 (未出版。)R. C. Gentry和L. L. Weiss,1944年1月。编号10 *伦敦温度的持久性。H. W. Norton和G. W. Brier,1944年1月。编号11 *选择“最佳”预测的技能。G. W. Brier,1944年1月。编号关于上空空气中跨压力和温度变化的12个注释。R. C. Gentry,1944年1月。(未出版。)编号(未出版。)13调查和实际使用在上层图表上构建六个小时的isallobars的方法。E. M. Cason和P. F. Clapp,1944年1月。编号大气的重量变化分为三层。L. L. Weiss,1944年2月。(联合国出版。)编号15 *关于亚特兰大和迈阿密地区(北卡罗来纳州,佐治亚州和佛罗里达州)的预测预测的一些注释。格雷迪·诺顿(Grady Norton),1944年2月。编号16 *预报员信心的验证以及在天气预报中使用概率语句的使用。G. W. Brier,1944年2月。编号17 *伴随亚速尔群岛区域的气旋活动的压力模式。R. L. Pyle,1944年3月。编号18 *正常的平均虚拟温度和空气柱的重量在海平面和10,000英尺之间。工作人员,1944年7月的扩展预报部分。编号19 *在西海岸地层形成和耗散期间温度变化。Morris Neiburger(加利福尼亚大学洛杉矶分校),1944年7月。编号20在西风中长波运动的经验研究。P. F. Clapp,1944年7月。(未租用租用。)编号21 *有关预后天气图表制备的报告集。J. R. Fulks,H。B。Wobus和S. Teweles,由C. P. Mook编辑,1944年10月。编号22 *在较低对流层中表面温度与平均虚拟温度之间的关系。W. M. Rowe,1944年11月。编号编号23 *预测加利福尼亚州奥克兰机场的Stratus Cloud天花板形成时间。爱德华·M·弗农(Edward M. Vernon),1945年4月。24 *对纬向指数的极性反气旋发生和相关变化的研究。杰罗姆·纳米亚斯(Jerome Namias),1945年9月。编号25 *有关洛杉矶地区客观降雨预测研究计划的进度报告。J. C. Thompson,1946年7月。编号26 A盆地中定量降水预测的研究。Glen W. Brier,1946年11月。$ 0.25号27客观的预测天气最低温度的客观方法,D。C。C. P. Mook和Saul Price,1947年8月。$ 0.35号28 *夏威夷群岛预测远程降水的可能性。Samuel B. Solot,1月1日。编号29预测田纳西山谷五天降水的客观方法。William H. Klein,1948年7月。^ _ $ 0-30编号30关于降水的人工产生的第一部分报告:俄亥俄州层状云,1948年。Richard D. Coons,R。C。Gentry和Ross Gunn,1948年8月。$ 0.30